RDKit + Vernalis extensions workshop

Greg Landrum (KNIME)
Steve Roughley (Vernalis)

Workshop materials:
http://tinyurl.com/y4bdtab3
What we will do

• Exercise 1: MMPs
 – Generate MMPs for a dataset with the Vernalis nodes
 – Do some filtering
 – Visualize results

• Exercise 2: Patent analysis
 – Filter compounds by properties
 – Find “key” structure
 – Find “scaffold”
 – Perform R-Group decomposition
 – Enumerate missing compounds

Workshop materials: http://tinyurl.com/y4bdtab3
Brief intro to the RDKit
The RDKit: An open-source toolkit for cheminformatics

- Business-friendly BSD license
- Runs on Linux/Mac/Windows
- Commercial support available
- Releases every six months
- Active and engaged community
- Core data structures and algorithms in C++
- Usable from Python (2 or 3), C#, or Java
- Strong integration with other tools like KNIME, Jupyter, Pandas, and PostgreSQL
- Pretty good documentation
- Basic functionality highlights:
 - Chemical reactions
 - 2D depiction
 - Substructure searching
 - Canonical SMILES
 - Gasteiger-Marsili charges
 - Molecular standardization
- 2D Functionality highlights:
 - RECAP and BRICS support
 - Multi-molecule MCS
 - Similarity maps
 - Functional group filters
 - Diversity picking
- Supported fingerprint highlights:
 - Morgan/Feature Morgan (ECFP/FCFP-like)
 - RDKit (Daylight-like)
 - Atom-pairs and topological torsions
 - MACCS keys
 - Avalon
- Descriptor highlights:
 - Hall-Kier χ and κ descriptors
 - SLogP, SMR, TPSA
 - MQN
 - “MOE-like” VSA
 - Compositional (number of donors, number of rings, number of heterocycles, etc.)
- 3D Functionality highlights:
 - 2D->3D conversion/conformational analysis via distance geometry
 - UFF and MMFF94/MMFF94S implementations for cleaning up structures
 - Feature maps and feature-map vectors
 - Shape-based similarity
 - RMSD-based molecule-molecule alignment
 - Open3DAlign implementation
 - Integration with PyMOL
 - Torsion Fingerprint Differences

www.rdkit.org
The RDKit code ecosystem

C++:
- Core data structures and algorithms

Python:
- Jupyter
- pandas
- Boost.Python
- PostgreSQL

Java
- KNIME

C#
- SWIG

The exact same implementation is available in all endpoints
The RDKit and KNIME

- Open-source wrappers for KNIME maintained by NIBR and the open-source community
- Useful for:
 - Descriptor calculation
 - Cleaning structures
 - Canonical SMILES and InChi conversion
 - Fingerprints
 - Scaffolds/substructures
 - Reaction simulation
 - Conformation generation
 - and more...

https://github.com/rdkit/knime-rdkit
Download data/exercises

http://tinyurl.com/y4bdtab3
Brief intro to MMPs
MMPs workflow
Background and Idea

• Construct and explore MMPs for a set of compounds measured on a collection of CYP assays
• Find a set of MMPs that show up multiple times for a given assay and that always increase/decrease activity
Tip: enabling “master-detail” selection in views
Patent workflow
Background and Idea

Here we’re working with compounds extracted from a pharmaceutical patent (data are from SureChEMBL)
- Find the “key” compound in a pharmaceutical patent
- Construct an estimate of the chemical scaffold, or “Markush” structure for the patent
- Do R-group decomposition to see what’s in the patent
- Enumerate some compounds that aren’t in the patent
Tip: Removing duplicates

• Use the GroupBy node
Tip: interactive filtering
Tip: Interactive selection of a subset of rows