Scalability: Many KNIME Workflows / Users

• KNIME Server
 – Scheduling
 – Distributed Executors – Scale up/Scale out
 • KNIME Cluster Execution
 – KNIME Server REST API
 – KNIME WebPortal
 – KNIME Model Factory
Performance and Scalability of a KNIME Workflow

Optimize:

- Effectiveness
 - Score
 - Accuracy
 - Model
 - Result

- Efficiency
 - Runtime
 - Resources
 - Costs
 - "Happiness"

Effectiveness

- Collaborate
- Automate
- Manage
- Deploy

Load > Integrate > Transform > Analyze > Visualize

KNIME Analytics Platform

KNIME Integrations

KNIME Extensions

Community Extensions

Partner Extensions

KNIME Server

Open Source

© 2019 KNIME AG. All rights reserved.
KNIME Performance and Scalability Options

- Soft Options
- Hardware Options
- 3rd party Execution Contexts

(KNIME Setup)
(Resources)
(KNIME Integrations....)
Soft Options (KNIME Setup) Highlights

• Memory
 – Heap Space
• Redirecting Workspaces, etc. to SSD
• Set Data Tables in Memory Size

• Data Tables in Memory
• Streaming
• Parallel Chunking
• Workflow Structure

https://www.knime.com/blog/optimizing-knime-workflows-for-performance
Hardware Options (Resources)

- Client
- Server
- Cloud
- Hybrid
- Memory
- SSD
- Cores
- GPUs
- Others
- Windows
- Mac OS X
- Linux

Hosting

Hardware

Operating System
3rd party Execution Contexts (KNIME integrations....)

- R
- Python
- Jupyter
- Spark
- H20
- Tensorflow
- Keras
- Databases
- Microsoft SQL Server R Services
- Kafka
 Amazon – S3, Connectors, etc.
- Azure – Blobstore, Connectors, etc.

Considerations:
- Environment Instantiation/Startup?
- Data conversion to environment format?
- “Everything in Memory” limits?
- Alternate Environment Controls
 (Memory, GPU, etc.)

- GIT Client
- Google Connectivity
- Call External
- REST

Considerations:
- “Outside” of any sort of KNIME control
Define your workflow steps

<table>
<thead>
<tr>
<th>Workflow Steps</th>
<th>Initialize</th>
<th>Load</th>
<th>Join</th>
<th>Transform</th>
<th>Feature Prep</th>
<th>Learn</th>
<th>Evaluate</th>
<th>Consolidate</th>
<th>Deploy</th>
<th>Interact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

© 2019 KNIME AG. All rights reserved.
Benchmarking Performance & Scalability in Practice

Workflow Steps

<table>
<thead>
<tr>
<th>Workflow Steps</th>
<th>Initialize</th>
<th>Load</th>
<th>Join</th>
<th>Transform</th>
<th>Feature Prep</th>
<th>Learn</th>
<th>Evaluate</th>
<th>Consolidate</th>
<th>Deploy</th>
<th>Interact</th>
</tr>
</thead>
</table>

Identify Relevant capabilities

1. Define your workflow steps

KNIME Analytics Platform

- KNIME Native Nodes
- KNIME Streaming
- DBMS
- R
- Python
- H2O
- Spark
- Keras
- Tensorflow
- Google API
- Microsoft SQL
- R
- Call External

KNIME Environment Contexts

- WebPortal
- REST API
Benchmarking Performance & Scalability in Practice

1. Define your workflow steps

2. Identify Relevant capabilities

3. Define possible Scenarios

<table>
<thead>
<tr>
<th>Environment Contexts</th>
<th>KNIME Analytics Platform</th>
<th>Workflow Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBMS</td>
<td>KNIME Native Nodes</td>
<td>Initialize</td>
</tr>
<tr>
<td>R</td>
<td>KNIME Streaming</td>
<td>Load</td>
</tr>
<tr>
<td>Python</td>
<td></td>
<td>Join</td>
</tr>
<tr>
<td>H2O</td>
<td></td>
<td>Transform</td>
</tr>
<tr>
<td>Spark</td>
<td></td>
<td>Feature Prep</td>
</tr>
<tr>
<td>Keras</td>
<td></td>
<td>Learn</td>
</tr>
<tr>
<td>Tensorflow</td>
<td></td>
<td>Evaluate</td>
</tr>
<tr>
<td>Google API</td>
<td></td>
<td>Consolidate</td>
</tr>
<tr>
<td>Microsoft SQL R</td>
<td></td>
<td>Deploy</td>
</tr>
<tr>
<td>Call External</td>
<td></td>
<td>Interact</td>
</tr>
<tr>
<td>WebPortal</td>
<td>Server</td>
<td></td>
</tr>
<tr>
<td>REST API</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Benchmarking Performance & Scalability in Practice

Workflow Steps

<table>
<thead>
<tr>
<th>Initialize</th>
<th>Load</th>
<th>Join</th>
<th>Transform</th>
<th>Feature Prep</th>
<th>Learn</th>
<th>Evaluate</th>
<th>Consolidate</th>
<th>Deploy</th>
<th>Interact</th>
</tr>
</thead>
</table>

1. **Define your workflow steps**
2. **Identify Relevant capabilities**
3. **Define possible Scenarios**
4. **Deal with Environment contexts**

KNIME Analytics Platform

<table>
<thead>
<tr>
<th>KNIME Native Nodes</th>
<th>KNIME Streaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBMS</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Python</td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>Spark</td>
<td></td>
</tr>
<tr>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>Tensorflow</td>
<td></td>
</tr>
<tr>
<td>Google API</td>
<td></td>
</tr>
<tr>
<td>Microsoft SQL R</td>
<td></td>
</tr>
<tr>
<td>Call External</td>
<td></td>
</tr>
</tbody>
</table>

KNIME Server

| WebPortal | REST API |

© 2019 KNIME AG. All rights reserved.
Benchmarking Performance & Scalability in Practice

1. Define your workflow steps
2. Identify relevant capabilities
3. Define possible scenarios
4. Deal with environment contexts
5. Set environment and execute

Workflow Steps:
- Initialize
- Load
- Join
- Transform
- Feature Prep
- Learn
- Evaluate
- Consolidate
- Deploy
- Interact

KNIME Analytics Platform
- KNIME Native Nodes
- KNIME Streaming
- DBMS
- R
- Python
- H2O
- Spark
- Keras
- Tensorflow
- Google API
- Microsoft SQL
- R
- Call External

Environment:
- Memory:
- Cores:
- Disktype:

Execution Type:
- Local / Cloud

Operating System:
- Windows
Benchmarking Performance & Scalability in Practice

1. Define your workflow steps
2. Identify Relevant capabilities
3. Define possible Scenarios
4. Deal with Environment contexts
5. Set environment and execute
6. Measure and Compare

Workflow Steps
- Initialize
- Load
- Join
- Transform
- Feature Prep
- Learn
- Evaluate
- Consolidate
- Deploy
- Interact

KNIME Analytics Platform
- KNIME Native Nodes
- KNIME Streaming
- DBMS
- R
- Python
- H2O
- Spark
- Keras
- Tensorflow
- Google API
- Microsoft SQL
- R
- Call External

KNIME Server
- WebPortal
- REST API

Environment Contexts
- Environment:
 - Memory:
 - Cores:
 - Disktype:
- Execution Type:
 - Local / Cloud
- Operating System:
 - Windows

Environment:
- Memory:
- Cores:
- Disktype:
- Execution Type:
- Operating System:
Measure and Compare

- Measures
 - Model Performance
 - User Satisfaction, etc.
- Total Runtime
 - As well as individual node runtimes
- Environment Settings
 - Memory Usage
 - Cores
 - Disk Types
 - GPUs
 - etc.
- Execution
- Infrastructure Settings

Helpful Tools

- KNIME Measurement MetaNode
- KNIME Measurement Consolidation Workflow
Measure Workflow Resources and Times - MetaNode

- Measured:
 - Total Execution Time
 - Individual Node Executions
 - Maximum Memory Used
 - Heap Space committed
 - Heap Space used
 - Cores Used
 - Environment Settings
 - OS, Version, etc.
 - INI Settings
 - Your own labels and details
 - Local/Cloud, SDD, etc.
Benchmarking: An Example with 3 Alternatives

- KNIME
- KNIME + H2O
- KNIME + Spark
Calling Workflow: Looping
Example Scenario Report

<table>
<thead>
<tr>
<th>Method</th>
<th>Hardware Environment</th>
<th>Number Rows</th>
<th>num Processors</th>
<th>XMXinG</th>
<th>heap Committed MB</th>
<th>heap Usaged MB</th>
<th>Duration of Execution seconds</th>
<th>Accuracy MS per record</th>
<th>Runtime Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native KNIME</td>
<td>Laptop</td>
<td>10000</td>
<td>8</td>
<td>24</td>
<td>5020</td>
<td>582</td>
<td>6</td>
<td>0.605</td>
<td>0.000</td>
</tr>
<tr>
<td>Native KNIME</td>
<td>Laptop</td>
<td>100000</td>
<td>8</td>
<td>24</td>
<td>8429</td>
<td>1314</td>
<td>13</td>
<td>0.614</td>
<td>0.000</td>
</tr>
<tr>
<td>Native KNIME</td>
<td>Laptop</td>
<td>1000000</td>
<td>8</td>
<td>24</td>
<td>15702</td>
<td>6652</td>
<td>160</td>
<td>0.613</td>
<td>0.000</td>
</tr>
<tr>
<td>Native KNIME</td>
<td>AWS</td>
<td>10000</td>
<td>16</td>
<td>50</td>
<td>15657</td>
<td>945</td>
<td>6</td>
<td>0.606</td>
<td>0.124</td>
</tr>
<tr>
<td>Native KNIME</td>
<td>AWS</td>
<td>10000</td>
<td>16</td>
<td>50</td>
<td>18208</td>
<td>1373</td>
<td>13</td>
<td>0.609</td>
<td>0.262</td>
</tr>
<tr>
<td>Native KNIME</td>
<td>AWS</td>
<td>1000000</td>
<td>16</td>
<td>50</td>
<td>24759</td>
<td>6058</td>
<td>86</td>
<td>0.615</td>
<td>0.09</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>Laptop</td>
<td>10000</td>
<td>8</td>
<td>24</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>Laptop</td>
<td>100000</td>
<td>8</td>
<td>24</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>Laptop</td>
<td>1000000</td>
<td>8</td>
<td>24</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>AWS</td>
<td>10000</td>
<td>16</td>
<td>60</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>AWS</td>
<td>10000</td>
<td>16</td>
<td>60</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>AWS</td>
<td>10000</td>
<td>16</td>
<td>60</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>Laptop</td>
<td>10000</td>
<td>8</td>
<td>24</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>Laptop</td>
<td>100000</td>
<td>8</td>
<td>24</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>Laptop</td>
<td>1000000</td>
<td>8</td>
<td>24</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>AWS</td>
<td>10000</td>
<td>16</td>
<td>60</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>AWS</td>
<td>10000</td>
<td>16</td>
<td>60</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>AWS</td>
<td>10000</td>
<td>16</td>
<td>60</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
</tbody>
</table>
Example Comparison Report and Drill Down

<table>
<thead>
<tr>
<th>Method</th>
<th>Number Rows</th>
<th>Laptop</th>
<th>AWS</th>
<th>Speedup in MS</th>
<th>% Speedup</th>
<th>Cost of Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native KNIME</td>
<td>10000</td>
<td>6383</td>
<td>6185</td>
<td>197</td>
<td>3%</td>
<td>$0.12</td>
</tr>
<tr>
<td>Native KNIME</td>
<td>100000</td>
<td>13190</td>
<td>13116</td>
<td>74</td>
<td>1%</td>
<td>$0.26</td>
</tr>
<tr>
<td>Native KNIME</td>
<td>1000000</td>
<td>160103</td>
<td>85516</td>
<td>74587</td>
<td>47%</td>
<td>$1.71</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>10000</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>100000</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>H2O in KNIME</td>
<td>1000000</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>10000</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>100000</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>Apache Spark</td>
<td>1000000</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
</tbody>
</table>
Benchmarking Performance & Scalability in Practice

• Public EXAMPLES Server:
 - 53_Performance_and_Scalability
 - 01_workflows
 - 00_Scalable_Data_Generation
 - 01_KNIME_for_Performance
 - 02_H2O_for_Performance
 - 03_Spark_for_Performance
 - 02_data
 - data.csv
 - Measurements.csv
 - 03_Metanode_Templates
 - Measure Workflow Resources and Times
 - 04_Control_Workflow_for_Performance_and_Scalability_Measurements

• This PPT

• Blog and Whitepaper to follow
KNIME Champions

KNIME Champions

Table

© 2019 KNIME AG. All rights reserved.
The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.