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Doing the Data Science Dance

mailto:dean@abbottanalytics.com


Data Science vs. Other Labels
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Google Trends
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Google Trends
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What do Predictive Modelers do?
The CRISP-DM Process Model
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• CRoss-Industry Standard 
Process Model for Data 
Mining 

• Describes Components of 
Complete Data Mining 
Cycle from the Project 
Manager’s Perspective

• Shows Iterative Nature of 
Data Mining
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What we Want 

to Do!
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How The Citizen Data 

Scientist Will 

Democratize Big Data
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How The Citizen Data 

Scientist Will 

Democratize Big Data

Published on April 6, 2016

Retailer Sears, for example, 

recently empowered 400 staff  

from its business intelligence (BI) 

operations to carry out advanced, 

Big Data driven customer 

segmentation – work which 

would previously have been 

carried out by specialist Big Data 

analysts, probably with PhDs.



Is it a Recipe?
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Is it a Recipe?
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Can we apply a recipe to 

machine learning and 

data science modeling 

processes?



Good Set of  Data Prep Steps!
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https://www.knime.org/files/knime_seventechniquesdatadimreduction.pdf



Data Preparation Dependencies

• Fill missing values

• Explode categorical variables

• *Outliers and scale very influential

• Sometimes automatic in software; beware of  how!

• Categoricals are fine

• Numeric data must be binned (except some 

decision trees)

• Outliers don’t matter

• Missing values a category
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Why Are Outliers a Problem?

Squares…

Linear Regression: 

Mean Squared Error
K-Means Clustering
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https://en.wikipedia.org/wiki/Mean_s

quared_error

https://en.wikipedia.org/wiki/Eucli

dean_distance



Effect of  Outliers on Correlations 

(and Regression)

• 4,843 records
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Effect of  Outliers on Correlations 

(and Regression)

• 4,843 records
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Effect of  Outliers on Correlations 

(and Regression)

• 4,843 records

Corresponds to R^2 increase from 0.42 to 0.53
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Decision Trees Can Handle it
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Effect of  Distance on Clusters
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Effect of  Distance on Clusters
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Effect of  Distance on Clusters
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Effect of  Distance on Clusters

© Abbott Analytics, 2001-201721



© Abbott Analytics 2001-201822



Log transform the heavily skewed fields
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Dummy Vars

Note: stdev are

Typically 0.5



Try K-Means with Different 

Normalization Approaches
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K Means Clustering:

Magnitude and Dummy Bias
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Measurements 

are F Statistic



PCA: Natural Units
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PCA: Scaled Units
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PCA: Scaled and Dummy Scaling
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PCA: Scaled and Dummy Scaling
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Missing Value Imputation

• Delete the record (row), or delete the field (column)

• Replace with a constant

• Replace missing value with mean, median, or distribution

• Replace missing with random self-substitution

• Surrogate Splits (CART)

• Make missing a category

• Simple for “rule-based” algorithms; Turn continuous into categorical for numeric algorithms

• Replace with the missing value with an estimate

• Select value from another field having high correlation with variable containing missing values  

• Build a model with variable containing missing values as output, and other variables without 

missing values as an input
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CHAID Trees: Missing Values are 

Just Another Category
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Summary
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Data Preparation Step
Linear 

Regression K-NN
K-Means 

Clustering PCA
Neural 

Networks
Decision 

Trees
Fill Missing Values Y Y Y Y Y *
Correlation Filtering Y Y Y

De-Skew (log, box-cox) Y Y Y Y
Mitigate Outliers Y Y Y Y * *
Remove Magnitude Bias 
(Scale) Y Y Y Y *
Remove Categorical 
"Dummy" Bias Y Y Y Y

Mitigate Categorical 
Cardinality Bias -- -- -- -- -- Y



Stratify or Not to Stratify…

That is the Question!?
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5.1% TARGET_B = 1: 

unbalanced data



Comparing Logistic Regression with and 

without Equal Size Sampling
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Equal Sampling

No Stratified Sampling

https://www.predictiveanalyticsworld.com/sanfrancisco/2013/pdf/Day2_1050_Abbott.pdf



Don’t Need to Stratify With Many Algorithms
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https://www.predictiveanalyticsworld.com/sanfrancisco/2013/pdf/Day2_1050_Abbott.pdf



Know the Algorithm when Developing 

Sampling Strategy
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Variable Coeff.
Std. 
Err.

P>|z| Coeff._natural Std. Err._natural P>|z|_natural coeff diff coeff compare

RFA_2F -0.133532984 0.0338 0.000 -0.1563345 0.024 0.000 0.023 within SE

D_RFA_2A -0.163727182 0.1210 0.176 -0.0934212 0.079 0.237 0.070 within SE

F_RFA_2A 0.038231571 0.0884 0.665 0.0357819 0.062 0.565 0.002 within SE

G_RFA_2A 0.316663027 0.1267 0.012 0.2779701 0.091 0.002 0.039 within SE

DOMAIN2 -0.068966948 0.0767 0.369 -0.1169964 0.056 0.036 0.048 within SE

DOMAIN1 -0.266408264 0.0837 0.001 -0.2845323 0.060 0.000 0.018 within SE

NGIFTALL_log
10

-0.46212497 0.0998 0.000 -0.4444304 0.072 0.000 0.018 within SE

LASTGIFT_log
10

0.062766545 0.2044 0.759 0.1813683 0.141 0.199 0.119 within SE

Constant 0.695770991 0.2785 0.012 3.5393926 0.194 0.000 2.844 outside SE

Stratified Natural (orig)



Input Variable Interactions

• Algorithms are mixed on interactions in theory

• Linear Regression, Logistic Regression, kNN, kMeans clustering, 
PCA…. are main effect models

• Decision trees are greedy searchers

• Built to find interactions

• But, only if  they can be found in sequence (one at a time, stepwise)

• Neural Networks find interactions well (XOR)

• Naïve Bayes find intersections, not interactions

• Algorithms don’t always identify interactions well or well-enough 
in practice
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Simple Interaction Function

• Two uniform variables: 
x and y

• 2,564 records

• if ( x*y > 0 ) return ("1"); 

• else return("0");
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Four Classifiers

• aaa
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Naïve BayesDecision Tree, min Leaf  node 50 records

Logistic Regression Rprop Neural Net, 300 epochs



Errors

© Abbott Analytics, 2001-201741

Naïve BayesDecision Tree, min Leaf  node 50 records

Logistic Regression Rprop Neural Net, 300 epochs

True correct

False incorrect

False correct

True incorrect



Don’t Build Interactions Manually*

• Too many…too many

• So what do you do?
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* Except for those you know about



Automatic Interaction Detection
• Trees: build 2-level trees

• Pros: works with continuous and categoricals

• Cons: greedy, only finds one solution at a time (Battery)

• Association rules: build 2-antecedent rules

• Pros: exhaustive

• Cons: only works with categoricals

• Use the linear/logistic regression algorithm itself, 
loop over all 2-way interactions

• Pros: context is the model you may want to use, 
easy to do in R, Matlab, Python, SAS (coding)

• Cons: slow, have to  code, what to do with dummies
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Summing up what 

we’ve covered

Is this a Recipe?



Is it a Recipe?....YES!
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Can we apply a recipe to 

machine learning and 

data science modeling 

processes?



Conclusions

• Know what the algorithms can do (and not do!) 

before deciding on data preparation

• When are data shapes and data ranges important?

• It’s not hard….just requires some thought

• Once you know what to do, you have your recipe!
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