Doing the Data Science Dance

Dean Abbott
Abbott Analytics, SmarterHQ
KNIME Fall Summit 2018

Email: dean@abbottanalytics.com
Twitter: @deanabb

Data Science vs. Other Labels

Google Trends

What do Predictive Modelers do? The CRISP-DM Process Model

- CRoss-Industry Standard Process Model for Data Mining
- Describes Components of Complete Data Mining Cycle from the Project Manager's Perspective
- Shows Iterative Nature of Data Mining

> How The Citizen Data Scientist Will Democratize Big Data Published on April 6, 2016

How The Citizen Data Scientist Will Democratize Big Data Published on April 6, 2016

Retailer Sears, for example, recently empowered 400 staff from its business intelligence (BI) operations to carry out advanced, Big Data driven customer segmentation - work which would previously have been carried out by specialist Big Data analysts, probably with PhDs.

Is it a Recipe?

What's wrong with my cake? 10 common baking problems fixed!

$\oplus \boldsymbol{O}^{\circ}$ ©

Jessica Dady

March 30, 2018 6:00 am

10 common baking problems fixed!

1. My cake didn't rise
2. My cake is greasy
3. My cake is stuck in the tin
4. My cake is burnt
5. My cake is raw
6. My cake mix has split
7. My cake is too dry
8. My cake has sunk in the middle
9. My cake has risen unevenly
10. My cake has shrunk

Is it a Recipe?

Can we apply a recipe to machine learning and data science modeling processes?

An End to End
Applied Machine Learning Recipe in
R: Binary
Classification using
Bagging, Boosting \&
Neural Networks

Good Set of Data Prep Steps!

Seven Techniques for Dimensionality Reduction
Missing Values, Low Variance Filter, High Correlation Filter, PCA, Random Forests, Backward Feature Elimination, and Forward Feature Construction

1. High number of missing values
2. Low variance
3. High correlation with other data columns
4. Principal Component Analysis (PCA)
5. First cuts in random forest trees
6. Backward feature elimination
7. Forward feature construction
https://www.knime.org/files/knime_seventechniquesdatadimreduction.pdf

Data Preparation Dependencies

Neural Newtorks
Linear Regression*
Logistic Regression
K Nearest Neighbor*
PCA*
Nearest Mean*
Kohonen Self-Organizing Maps*
Support Vector Machines
Radial Basis Function Networks
Discriminant Analysis

Decision Trees
Naïve Bayes
Rule Induction
Association Rules

- Fill missing values
- Explode categorical variables
- *Outliers and scale very influential
- Sometimes automatic in software; beware of how!
- Categoricals are fine
- Numeric data must be binned (except some decision trees)
- Outliers don't matter
- Missing values a category

Why Are Outliers a Problem? Squares...

Linear Regression: Mean Squared Error

K-Means Clustering

$$
\operatorname{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

$$
d(\mathbf{p}, \mathbf{q})=\sqrt{\sum_{i=1}^{n}\left(q_{i}-p_{i}\right)^{2}}
$$

https://en.wikipedia.org/wiki/Mean_s quared_error
https://en.wikipedia.org/wiki/Eucli dean_distance

A Effect of Outliers on Correlations analytics
 (and Regression)

- 4,843 records

| correlations | LASTGIFT | TARGET_D | LASTGIFT_log10 | TARGET_D_log10 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| LASTGIFT | 1 | 0.645 | 0.747 | 0.552 |
| TARGET_D | 0.645 | 1 | 0.641 | 0.847 |
| LASTGIFT_log10 | 0.747 | 0.641 | 1 | 0.750 |
| TARGET_D_log10 | 0.552 | 0.847 | 0.750 | 1 |

Effect of Outliers on Correlations (and Regression)

- 4,843 records

correlations	LASTGIFT		TARGET_D		LASTGIFT_log10
LASTGIFT	1	0.645	0.747	0.552	
TARGET_D	0.645	1	0.641	0.847	
LASTGIFT_log10	0.747	0.641	1	0.750	
TARGET_D_log10	0.552	0.847	0.750	1	
remove one outlier	LASTGIFT	TARGET_D	LASTGIFT_log10	TARGET_D_log10	
LASTGIFT	1	0.725	0.799	0.617	
TARGET_D	0.725	1	0.643	0.847	
LASTGIFT_log10	0.799	0.643	1	0.752	
TARGET_D_log10	0.617	0.847	0.752	1	

Corresponds to $\mathrm{R}^{\wedge} 2$ increase from 0.42 to 0.53

Effect of Distance on Clusters

Effect of Distance on Clusters

Effect of Distance on Clusters

Effect of Distance on Clusters

Log transform the heavily skewed fields

Column	Min	Mean	Median	Max	Std. Dev.	Skewness	Kurtosis	No. Missing	No. $+\infty$	No. $-\infty$	Histogram
NUMPROM_log10	0.699	1.6225	?	2.2923	0.2389	-0.5638	-0.5334	0	0	0	
NGIFTALL_log10	0.301	0.8956	?	2.3766	0.3447	-0.0742	-0.7723	0	0	0	
											0
LASTGIFT_log10	0.0	1.199	$?$	3.0004	0.2354	-0.4802	3.5736	0	0	0	
											T 0
						23				(c)	thbatt Analytics 2001-2018

Try K-Means with Different Normalization Approaches

Measurements	Variable	Type	Natural	Scalled [0,1]	$\begin{gathered} \text { Scaled }[0,1] ; \\ \text { dummies }[0.3,0.7] \end{gathered}$
are F Statistic	FISTDATE	continuous	415,191.15	873.90	862.42
	LASTGIFT_log10	continuous	502.33	17,134.27	8,936.27
	NGIFTALL_log10	continuous	38,724.24	3,148.09	3,718.02
	NUMPROM_log10	continuous	77,773.14	845.03	1,331.08
	D_RFA_2A	dummy	355.94	Infinity	6,341.91
	DOMAIN1	dummy	51.50	239,491.96	20,391.53
	DOMAIN2	dummy	16.15	54,942.39	13,003.09
	DOMAIN3	dummy	12.47	155,098.25	4,580.00
	DOMAIN4	dummy	6.56	270.42	148.01
	F_RFA_2A	dummy	801.02	33,172.69	78,485.65
	G_RFA_2A	dummy	81.61	93,041.59	18,953.72
	RFA_2F	ordinal	453.53	6,909.78	62,559.28
		Avg Continuous	133,047.71	5,500.32	3,711.95
		Avg Dummy	189.32	96,002.88	20,271.99
		Avg Ordinal	453.53	6,909.78	62,559.28
26				(C) Allatt Aualutice 2001-2018	

PCA: Natural Units

Natural Units	1. eigenvector	2. eigenvector	3. eigenvector	4. eigenvector	5. eigenvector	6. eigenvector	7. eigenvector	8. eigenvector	9. eigenvector	10. eigenvector	11. eigenvector
eigenvalue	1.254	0.380	0.308	0.211	0.153	0.082	0.046	0.027	0.016	0.005	0.005
RFA_2F	-0.952	-0.031	-0.124	0.062	0.206	0.175	0.022	-0.001	-0.015	-0.010	-0.028
D_RFA_2A	-0.123	0.003	0.009	-0.032	-0.100	-0.446	-0.861	0.005	-0.181	-0.011	-0.020
F_RFA_2A	0.194	0.088	-0.750	0.089	0.093	0.467	-0.336	-0.002	0.209	0.018	0.043
G_RFA_2A	0.059	-0.097	0.605	0.016	0.326	0.439	-0.361	-0.001	0.432	0.028	0.062
DOMAIN3	-0.009	-0.138	-0.079	-0.781	0.101	0.028	-0.001	-0.381	-0.003	0.429	-0.159
DOMAIN2	-0.022	0.768	0.117	0.282	0.005	-0.006	-0.004	-0.341	-0.005	0.421	-0.153
DOMAIN1	0.032	-0.610	-0.036	0.534	-0.095	-0.039	0.001	-0.354	-0.005	0.425	-0.151
DOMAIN4	0.001	-0.008	-0.005	-0.015	0.008	-0.001	0.003	0.783	-0.003	0.583	-0.216
NUMPROM_log10	-0.049	0.005	0.094	-0.056	-0.510	0.299	-0.070	-0.003	0.024	-0.265	-0.748
NGIFTALL_log10	-0.144	0.014	0.101	-0.090	-0.721	0.279	-0.053	0.000	0.006	0.216	0.560
LASTGIFT_log10	0.117	-0.027	0.126	0.031	0.185	0.436	-0.085	0.001	-0.858	0.007	0.032

PCA: Scaled Units

Scaled Units [0,1]	1. eigenvector	2. eigenvector	3. eigenvector	4. eigenvector	5. eigenvector	6. eigenvector	7. eigenvector	8. eigenvector	9. eigenvector	10. eigenvector	11. eigenvector
eigenvalue	0.381	0.333	0.218	0.186	0.054	0.046	0.036	0.027	0.005	0.002	0.002
RFA_2F	-0.057	0.256	-0.283	-0.569	0.622	-0.369	0.001	-0.003	0.000	0.045	-0.047
D_RFA_2A	-0.035	0.147	-0.175	-0.316	0.096	0.898	0.164	0.006	0.003	0.062	-0.004
F_RFA_2A	0.019	-0.841	0.036	0.033	0.436	0.059	0.302	-0.004	-0.002	-0.062	0.018
G_RFA_2A	0.062	0.437	0.306	0.557	0.536	0.084	0.296	-0.003	-0.003	-0.141	0.018
DOMAIN3	0.136	-0.004	-0.706	0.360	0.020	-0.001	-0.012	-0.380	-0.457	-0.001	-0.005
DOMAIN2	-0.770	-0.008	0.291	-0.069	0.006	0.010	-0.016	-0.341	-0.448	-0.001	-0.003
DOMAIN1	0.615	0.010	0.446	-0.304	-0.018	0.010	-0.013	-0.354	-0.451	-0.003	-0.001
DOMAIN4	0.009	-0.002	-0.014	0.008	0.006	-0.001	-0.010	0.783	-0.621	-0.003	-0.006
NUMPROM_log10	-0.012	0.066	-0.035	-0.061	-0.246	-0.142	0.645	-0.006	-0.015	0.128	-0.691
NGIFTALL_log10	-0.023	0.096	-0.084	-0.146	-0.246	-0.158	0.613	-0.004	-0.023	-0.128	0.695
LASTGIFT_log10	0.015	-0.008	0.065	0.118	0.071	-0.026	0.048	0.000	-0.006	0.968	0.189

PCA: Scaled and Dummy Scaling

Scaled Units [0,1]; Dummies [0.3,0.7]	1. eigenvector	2. eigenvector	3. eigenvector	4. eigenvector	5. eigenvector	6. eigenvector	7. eigenvector	8. eigenvector	9. eigenvector	10. eigenvector	11. eigenvector
eigenvalue	0.148	0.061	0.050	0.039	0.033	0.013	0.007	0.004	0.002	0.002	0.001
RFA_2F	-0.907	-0.044	-0.256	0.204	-0.006	0.253	0.025	0.001	0.023	-0.048	0.000
D_RFA_2A	-0.147	0.000	-0.006	-0.010	0.018	-0.460	-0.861	-0.005	0.154	-0.027	-0.004
F_RFA_2A	0.251	0.092	-0.676	-0.256	-0.117	0.497	-0.336	0.002	-0.168	0.070	0.001
G_RFA_2A	0.060	-0.095	0.534	0.364	0.083	0.536	-0.370	0.001	-0.359	0.094	0.004
DOMAIN3	-0.011	-0.139	-0.060	-0.177	0.768	0.036	-0.002	0.381	0.004	0.003	0.457
DOMAIN2	-0.032	0.767	0.090	0.131	-0.260	-0.003	-0.004	0.341	0.005	0.007	0.448
DOMAIN1	0.045	-0.609	-0.031	0.066	-0.538	-0.046	0.001	0.354	0.004	0.012	0.451
DOMAIN4	0.001	-0.008	-0.005	0.000	0.016	0.001	0.002	-0.783	0.004	0.004	0.622
NUMPROM_log10	-0.124	0.010	0.310	-0.584	-0.129	0.209	-0.065	0.004	0.013	-0.695	0.016
NGIFTALL_log10	-0.238	0.016	0.273	-0.599	-0.119	0.041	-0.005	-0.003	-0.024	0.702	-0.002
LASTGIFT_log10	0.114	-0.020	0.097	0.086	0.008	0.375	-0.063	-0.001	0.904	0.084	-0.007

Missing Value Imputation

- Delete the record (row), or delete the field (column)
- Replace with a constant
- Replace missing value with mean, median, or distribution
- Replace missing with random self-substitution
- Surrogate Splits (CART)
- Make missing a category
- Simple for "rule-based" algorithms; Turn continuous into categorical for numeric algorithms
- Replace with the missing value with an estimate
- Select value from another field having high correlation with variable containing missing values
- Build a model with variable containing missing values as output, and other variables without missing values as an input

CHAID Trees: Missing Values are Just Another Category

Summary

Data Preparation Step	Linear Regression	K－NN	K－Means Clustering	PCA	Neural Networks	Decision Trees
Fill Missing Values	Y	Y	Y	Y	Y	あ
Correlation Filtering	Y	Y	Y			
De－Skew（log，box－cox）	Y	Y	Y	Y		
Mitigate Outliers	Y	Y	Y	Y	あ	あ
Remove Magnitude Bias （Scale）	Y	Y	Y	Y	ぁ	
Remove Categorical ＂Dummy＂Bias	Y	Y	Y	Y		
Mitigate Categorical Cardinality Bias	घ़̣	घ़̣	घ̣	घ̣	घ़̣	Y

Stratify or Not to Stratify... That is the Question!?

Comparing Logistic Regression with and without Equal Size Sampling

https://www.predictiveanalyticsworld.com/sanfrancisco/2013/pdf/Day2_1050_Abbott.pdf

Don't Need to Stratify With Many Algorithms

Input Variable Interactions

- Algorithms are mixed on interactions in theory
- Linear Regression, Logistic Regression, kNN, kMeans clustering, PCA.... are main effect models
- Decision trees are greedy searchers
- Built to find interactions
- But, only if they can be found in sequence (one at a time, stepwise)
- Neural Networks find interactions well (XOR)
- Naïve Bayes find intersections, not interactions
- Algorithms don't always identify interactions well or well-enough in practice

Simple Interaction Function

- Two uniform variables: x and y
- 2,564 records

- if ($x^{*} y>0$) return ("1");
- else return("0");

Four Classifiers

Decision Tree, min Leaf node 50 records

Logistic Regression

Naïve Bayes

Rprop Neural Net, 300 epochs

Errors

True correct False incorrect False correct True incorrect

Decision Tree, min Leaf node 50 records

Logistic Regression

Naïve Bayes

Rprop Neural Net, 300 epochs

Don't Build Interactions Manually*

- Too many...too many

Table 4-16: Number of Two-Way Interaction Combinations

NUMBER OF VARIABLES NUMBER OF POSSIBLE TWO-WAY INTERACTIONS	
5	10
10	45
100	1,225
500	4,950
1000	124,750
499,500	

- so wnat ao you ao!
* Except for those you know about

$$
42
$$

Automatic Interaction Detection

- Trees: build 2-level trees
- Pros: works with continuous and categoricals
- Cons: greedy, only finds one solution at a time (Battery)

- Use the linear/logistic regression algorithm itself, loop over all 2-way interactions
- Pros: context is the model you may want to use, easy to do in R, Matlab, Python, SAS (coding)

- Cons: slow, have to code, what to do with dummies

Is it a Recipe?....YES!

Can we apply a recipe to machine learning and data science modeling processes?

An End to End
Applied Machine Learning Recipe in
R: Binary
Classification using
Bagging, Boosting \&
Neural Networks

Conclusions

- Know what the algorithms can do (and not do!) before deciding on data preparation
- When are data shapes and data ranges important?
- It's not hard....just requires some thought
- Once you know what to do, you have your recipe!

