

Implementing anomaly detection framework in KNIME

11/9/2018

CALPINE: National Portfolio of Approximately 26,000 MW

- Geographically diversified portfolio: Scale in America's most competitive power markets
- Featuring one of smallest environmental footprints in America's power generation sector
- · Largest operator of combined heat and power (cogeneration) technology in America

· Largest geothermal power producer in America

How important is equipment prognostics

- 80+ Plants, several thousand rotating equipment, translating to several thousand potential failures
 - Better monitor thy equipment
- Since 2013 Calpine has been using a 3rd party Anomaly Detection framework based on NASA's ORCA algorithm
 - Blind spots
 - No Fault Detection or Remaining Useful to speak of
- Improving on existing methods through a combination of DL and classical ML algorithms

Anomaly detection vs Fault Classification

Unknown unknowns

Unknown knowns

Anomaly detection in context

Remaining Useful Life as an odometer

Framework for equipment monitoring

Improving Calpine Anomaly Detection Framework

Existing Algorithm

New supplemental Algorithm based on Autoencoders

Framework overview

KNIME Analytics Platform

Appendix

Workflow - Training (Keras Network)

Workflow - Training (One Class Classification)

Workflow - Training (User Input)

Workflow - Training (Visualize Model Performance)

Workflow - Prediction (Rest API)

