
© 2018 Juniper Networks

WORKFLOW INTEGRATION
Juniper Networks
Owen Watson

© 2018 Juniper Networks

REST API
Workflow Integration with Python

© 2018 Juniper Networks © 2018 Juniper Networks

BACKGROUND ORCHESTRATION IS PROBLEMATIC!

We have a complex, interlinked set of ‘work flows’ using KNIME, Oozie, Alteryx, etc

These are spread across a variety of systems and services

They depend on each other… but they aren’t linked together

Failures and timing have a negative downstream effect

© 2018 Juniper Networks © 2018 Juniper Networks

WHY ME?

My area of interest is the (almost) ‘last mile’

Take the output from other workflows and bring it all together

Long running processes, so successful and current upstream data is essential

Relying on best-guess timing, which is not ideal

© 2018 Juniper Networks

INTEGRATE ALL THE THINGS!

© 2018 Juniper Networks © 2018 Juniper Networks

KNIME SERVER

Provides a REST API to allow for job control.

Which is great, but:

• There is virtually no documentation for the API…

Uses Mason: https://github.com/JornWildt/Mason

• There are no pre-built libraries to use it…

https://github.com/JornWildt/Mason

© 2018 Juniper Networks © 2018 Juniper Networks

BRINGING IT ALL TOGETHER

Mason looks good, but is yet another dependency.

As it’s JSON based, ignore it and parse it as JSON.

Single Python library that lets you:

Start (A)synchronously / Stop / Monitor jobs and then react accordingly

© 2018 Juniper Networks © 2018 Juniper Networks

PYTHON

© 2018 Juniper Networks © 2018 Juniper Networks

WORKFLOW INTEGRATION

Include as part of Python script running in Oozie

Start a pre-requisite KNIME job and then wait for completion and fail / continue

Start a tangential workflow asynchronously, letting it run in the background, or pseudo
synchronously.

from pyknime import *

Create a new connection to the knime server, noting this doesn’t pre-authenticate
ks = Knime(server="http://knimeserver.internal",

port="8080",
username="owatson",
password="password”)

Start task synchronously, i.e. block until the job finishes or the timeout cancels it.
ks_job_details = ks.startWorkflowJob(”my_workflow",

”workflow_folder",
async=False,
timeout=900)

get the ID of the job...
ks_job_id = ks_job_details.keys()[0]

...and check whether it succeeded
ks_job_state = ks_job_details[ks_job_id]

© 2018 Juniper Networks © 2018 Juniper Networks

WAIT… THAT’S ALL?

Pretty much, yeah.

Simple, but critical integration point.

Not big, flashy, or even noticeable but provides a glue to better control our workflows

© 2018 Juniper Networks © 2018 Juniper Networks

AVAILABILITY

Currently it’s only available internally.

Re-commenting to match Python standards and will be published on GitHub.

Or, email me, and I’ll (try and) send you a copy: owatson@juniper.net

mailto:owatson@juniper.net

	Workflow Integration
	Rest API
	Background Orchestration is problematic!
	Why me?
	Integrate all the things!
	KNIME Server
	Bringing it all together
	Python
	Workflow Integration
	Wait… that’s all?
	Availability

