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Anomaly Detection covers a large number of data analytics use cases.
However, here with Anomaly Detection we refer to the detection of
unexpected events, specifically of mechanical failures.

The “unexpected” character of the event means that no such examples
are available in a dataset. So, how do we proceed in a case where no
examples are available? It requires a little change in perspective. In this
case, we can only train a machine learning model on non-failure data, i.e.
on the data describing the system operating in “normal” conditions. The
evaluation of whether the input data is an anomaly or just a regular
operation must be performed during deployment after predictions have
been made.

The idea is that a model trained on “normal” data can only predict the
next “normal” sample. However, if the system is not working in “normal”
conditions anymore, the model prediction will be far from reality. Thus,
the distance between the reality sample and the predicted sample can
tell something about the underlying system’s condition.

This whitepaper shows the implementation of an auto-regressive
model for time series prediction, trained on a time window where the
rotor was working properly. The distance between predicted and real
signal, together with its statistics, is then calculated on this same
training window.

During deployment, new samples are predicted from input samples,
distance is computed, alarm signals are calculated, and statistics
based thresholds are applied.The alarm signal wandering off the
thresholds triggers a set of verification procedures.

Workflows and data used for this whitepaper can be found on the KNIME
EXAMPLES server under 50_Applications/17_AnomalyDetection
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Anomaly Detection as a Time Series Problem

We are all witnessing the current explosion of data: social media data,
clinical data, system data, CRM data, web data, and lately tons of sensor
data! With the advent of the Internet of Things (loT), systems and
monitoring applications are producing humongous amounts of data which
undergo evaluation to optimize costs and benefits, predict future events,
classify behaviors, implement quality control, and more. All these use
cases have been relatively well established by now: a goal is defined, a
target class is selected, a model is trained to recognize/predict the target,
and the same model is applied to new never-seen-before real-life data.

The newest challenge lies in predicting the “unknown”. The “unknown” is
an event that is not part of the system past, an event that cannot be found
in the system’s historical data. In the case of network data the “unknown”
event can be an intrusion, in medicine a sudden pathological condition,
in sales or credit cards a fraudulent transaction, and, finally, in machinery
the breakdown of a mechanical piece. A high value, in terms of money,
life expectancy, and/or time, is usually associated with the early
discovery, warning, prediction, and/or prevention of the “unknown” and,
most likely, undesirable event.

Specifically, prediction of “unknown” disruptive events in the field of
mechanical maintenance takes the name of “anomaly detection”.

In this particular project, attributes and their evolutions are monitored
over time before the catastrophic - previously unseen - event occurs. A
deviation of attribute evolution from historical evolution patterns can be a
warning sign for an anomaly to happen. This might trigger an anomaly
alarm, requiring further mechanical checkups.

There are a lot of use cases suitable for an anomaly detection application:
turbines, rotors, chemical reactions, medical signals, spectroscopy, and
so on. In this whitepaper we deal with rotor data.

When a rotor is slowly deteriorating, one of the sensor measurements
might change gradually over time until eventually the rotor breaks. On the
one hand we want to keep the rotor running as long as possible —
mechanical pieces are expensive! —; on the other hand, we want to avoid
the rotor breaking down completely, producing even more damage.
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The easiest approach to an anomaly detection problem is just to observe
the signal wandering over time. Signal boundaries are defined in the
anomaly-free time window. The boundaries are usually centered on the
average signal value and bounded by twice the standard deviation in both
directions. If the signal is wandering off this anomaly free area, an alarm
should occur. This technique is named Control Chart,

A more sophisticated approach predicts the signal’s future values with a
more complex model than just its average. We used here an Auto-
Regressive (AR) model to predict the future numerical values of each
one of the time series in the data.

On an anomaly-free time window, AR models are trained, future values
are predicted, distance between predicted and real values is calculated,
boundaries are defined on distance statistics, and a few alarm signals
are built based on the distance values. During deployment, if the alarm
signals wanders off the defined boundaries, an alarm is fired off requiring
further checkups.

System with
sensors

Predicted
Time Series

Training of
Machine Learning
model

Time Series from
sensors

Data and Pre-processing

We used here a twenty-eight sensor matrix, focusing on eight parts (Fig.
2) of a mechanical rotor, on a time frame spanning January 1, 2007
through to April 20, 2009. In total, we have 28 time series from 28 sensors
attached to 8 different parts of the mechanical rotor.

Al input shaft vertical

A2 second shaft horizontal upper bearing
A3 third shaft horizontal lower bearing
Ad internal gear 275 degrees

A5 internal gear 190,5 degree

Ab input shaft bearing 150

A7 input shaft bearing 151

M1 torque KnM
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Figure 1.

Anomaly Detection
problems often do not
offer anomaly examples
in the training set. In this
case, we can only train a
machine learning model
on anomaly-free data and
calculate a  distance
between the original and
the predicted signal to
trigger an alarm.

Figure 2.

The 8 locations of the 28
sensors on the rotor
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The signals reach us after the application of the Fast Fourier Transform
(FFT), generating spectral frequency and amplitude values, in the form
of:

[date, time, FFT frequency, FFT amplitude]

Amplitude values have been averaged across frequency bands, time,
and sensor channel. This results in 313 time series, describing the
system evolution in different locations and frequency bands. Each
spectral amplitude originates from one of the original 28 sensors and
refers to a 100Hz-wide frequency band falling between OHz and 1200Hz
(file AlignedData.csv).

The whole data set shows only one breakdown episode on July 21, 2008.
The breakdown is visible only from some sensors and especially in some
frequency bands. After the breakdown, the rotor was replaced and much
cleaner signals were recorded afterwards.
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Anomaly Detection Technique: Control Chart

The most straightforward approach to anomaly detection calculates the
average value of the past signal for each time series and monitors any
deviation from it, going forward.

Average, Standard Deviation, and Level 1 Alarm

After reading the data from the file named AlignedData.csv and after
fixing the missing values in the time series with the latest available value,
we loop across all columns to calculate:

e The cumulative average (avg) with a Moving Aggregation node
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Figure 3.

Evolution over time of
time series A1-SV31/0,
100] and A1-SV31[500,
600]. The rotor
breakdown episode on
July 21t 2008 is easily
visible in the higher
frequency bands [500,
600] Hz rather than in the
lower frequency band [0,
100] Hz. There are 313
such time series in the
data set referring to
different frequency bands
of the original 28 time
series.



e The cumulative standard deviation (stddev) with the same Moving
Aggregation node

¢ The boundaries for “normal” time series behavior as
o UCL = avg + 2* stddev
o LCL avg — 2* stddev

e The level 1 alarm signal for each column / time series as:

Smessure$ < SLCLS => 1
Smessure$ > SUCLS => 1
TRUE => 0

The Moving Aggregation node allows for a number of statistical /
aggregation measures to be calculated on a moving window, such as
sum, average, standard deviation, median, maximum, and more.

The moving window can be forward (the first window sample is
substituted with the average value calculated on the whole window),
central (the central window sample is substituted with the average value
calculated on the whole window), and backward (the last window sample
is substituted with the average value calculated on the whole window).

The Moving Aggregation node also implements cumulative calculations
of the same statistical / aggregation measures, by enabling the flag
“Cumulative computation”. “Cumulative” means that the measure is
calculated on all samples of the time series prior to the current row. So,
a cumulative sum is the sum of past values up to the current row, a
cumulative average is the average calculated on all past samples up to
the current row, and so on.

The level 1 alarm is set through a Rule Engine node. The node sets 1
when the signal wanders off of the “normality” boundaries and 0
otherwise. The first level alarm time series are then collected by a Loop
End node (Fig. 5).

Level 2 Alarm and Taking Action

The level 1 alarm time series are just series of Os and 1s. However, a 1
alone does not mean much. It could be due to anything temporary: an
electricity spike, some turbulence, or something else quick and
unexpected. What is much more worrisome is a sequence of positive
level 1 alarms across all time series, i.e. across all frequency bands and
across all rotor monitored variables.
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In order to differentiate between a single level 1 alarm episode and a
more generalized episode, a Column Aggregator node calculates the
average value across all time series and for each day. A Rule Engine
then produces a level 2 alarm value, with value 1 if the calculated average
exceeds 0.25. Thus, a value of 1 in the level 2 alarm time series indicates
a more consistent deviation of the signal and therefore triggers a checkup
procedure.

Figure 4 shows the time series for level 1 alarms in blue and for level 2
alarms in red. The first level 2 alarms are visible just briefly at the
beginning of 2007 and more substantially starting in March 2008, a few
months before the actual breakout of the rotor.

Image - 0:322:303 - Line Chart (JFreeChart) - olEl

When a level 2 alarm is fired we have a number of possible actions we
can take: howling sirens, switching off the system, or just sending an
email to the person in charge of mechanical checkups. We chose to
proceed with sending an email. The final workflow, named
04_Creating_a_ControlChart_of a_Time_Series, is reported in Figure 5.

This analysis is intuitive and easy to implement. However, it is a bit
primitive in looking for signal anomalies. For example, the level 2 alarm
fired already at the beginning of 2007. This might have been a bit
premature, since the real breakdown only happened in July 2008.

Fire if level
2 Alarm

File Reader RowiD Missing Value 1st level alarm 2nd level alarm

Node 340
»— — I S -
i (ie

Generate LinePlot  Image Port Writer

B =»

- N e leamning boundaries and mean(alarm 1) across
read/Rgnediata csv remove date  resolve missings throw 1 if signal is signals at same time 7>|j.7ﬂ
produced by Pre-processing!  from loop with last value outside of boundaries  if mean(alarm 1) = 0.25
Time Alignment & Visualization ~ on columns AL, ] -
line plots .
with date on x-axis Node 308
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Figure 4.

Level 1 Alarm signal
(blue) and Level 2 Alarm
signal (red).

Figure 5.

Workflow  implementing
the Control Chart strategy
for anomaly detection



Anomaly Detection Technique: Auto-Regressive Models

While the concept of defining “normality” boundaries seems to be a
promising one, we need to use more sophisticated models to describe
the normal functioning of the rotor. A simple average and standard
deviation might not be accurate enough.

With this in mind, we move to the next approach involving auto-regressive
models to describe the “normal” behavior. Here, instead of using the
average “normal” value, we predict the next “normal” value from an auto-
regressive model trained on a time window where the rotor was working
fine. For that, we used the time window from January to August 2007 as
the training window. We use the time window after that, from September
2007 to 21 July 2008, as the maintenance window to check whether the
rotor measures are compliant with the model predictions.

Auto-Regressive Models and Distance Statistics

On the training window, an auto-regressive (AR) model is trained to
predict the current value using its past for each time series. This
generates 313 AR models, i.e. as many as the available time series. In
practice, we loop on all time series and on each time series:

- We build a vector of 10 past samples together with the current
value using a Lag Column node

- We impute missing values with the latest available value in time

- We train a Linear Regression model on the 10 past samples to
predict the current one

- We save the linear regression model in PMML format to be used
later in deployment

- We calculate the distances between predicted and real values

- We calculate the distance statistics (mean and standard deviation)

Note. The parameter N=10 of past samples could be optimized, by
using an optimization loop that maximizes the model performance
(see Numeric Scorer node) on the number of past samples.
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Train an auto-regressive model to predict the next value based on the past 10 values for each time series.

Linear Regression ~ Save model
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Alarm Levels and Deployment

Once the models are in place, we can deploy them to define an alarm
system. The idea is that the models, being trained over a time window
with normal functioning, are able to predict the next sample value only for
a correctly working rotor. The model will actually fail at predicting the next
value, if the rotor has started to mal-function.

Here, during deployment, for each time series, we predict the next value
based on the past 10 values, then measure the distance between the
predicted value and the current real value, and finally compare such
distance with the error statistics generated during training. If the error
distance is above (or below) the error mean +(-) 2* standard deviation,
an alarm spike is created as large as the distance value, otherwise the
alarm signal is set to 0. This alarm signal is named “alarm level 1”.

The whole prediction, error distance calculation, comparison with mean
and standard deviation of training error, and final level 1 alarm calculation
is performed inside the column loop within the deployment workflow. 313
level 1 alarm time series are calculated, i.e. one for each time series.

The level 1 alarm is a series of more or less high spikes. A single spike
per se does not mean much. It could be due to electricity fluctuation,
temperature quick change, or whatever temporary cause. A series of
spikes, on the opposite, might mean a more serious and permanent
change in the underlying system. Thus, an level 2 alarm series is created
as the moving average of the previous 21 samples of the level 1 alarm
series, on all 313 columns. These are the level 2 alarm time series and
are calculated in the metanode named “Alarm Level 2” (Fig. 7).
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Training workflow
02_Time_Series_AR_Training.
It trains an auto-regressive
model on 10 past values to
predict the current value for
each of the input time series.
Notice that the ftraining set
describes a system correctly
working. The model will be able
only to predict sample values
for a correctly working system.
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At this point, all level 2 alarm values are summed up across columns for
the same date. If this aggregated value exceeds a given threshold (0.01)
the alarm is taken seriously and a checkup procedure is triggered, in
metanode named “Trigger Checkup if level 2 Alarm = 17,

The trigger agent in that metanode starts an external workflow via the
“Call Workflow (Table Based)” node. This node in its configuration
window is set to start the external KNIME workflow “Send_Email_to
start_checkup”. The workflow “Send_Email_to start_checkup” has just
one central node: the Send Email node. The Send Email node - as the
name says - sends an email using a specified account on an STMP host
and its credentials.

Just barely modifying the deployment workflow, we get the chance to test
this strategy on a number of data points and therefore observe the
evolution over time of the level 2 alarm time series. In the modified
version, we read all data after the training set portion, i.e. from Sep 2007
till July 2008. The level 2 alarm time series are visualized for each
frequency band for each sensor in a stacked area chart. As you can see,
level 2 alarm values are raising already at beginning of March 2008
across all frequency bands and all sensors. However, the change in the
system becomes evident at the beginning of May 2008, especially in
some frequency bands of some sensors (see [200-300] A7-SA1 time
series).

Considering that the rotor broke off in July 22 2008, this would have been
a fairly advanced warning time!
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Deployment workflow
03a_Time_Series_ AR _Deployment.
Here we read the models trained
and saved in the training workflow,
we apply them to the data in a new
time window (at least 2 months
long), we calculate the distance
between predicted samples and
original samples and we generate
two level alarms. If alarm level 2 is
active, a checkup procedure is
triggered.
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Conclusions

In this whitepaper we investigated two techniques used in anomaly
detection applications.

The first technique (Control Chart) approximates FFT pre-processed
sensor time series with their respective average values from an anomaly
free time window.

The second technique (AR models) models the FFT sensor time-series
with predictions from auto-regressive models trained on a time window
where the rotor was working fine.

In both cases, boundaries are set and alarm signals are calculated, in
order to discover early signs of anomalies.
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Figure 8.

The deployment workflow has been
slightly modified to run a test on the
remaining time window ftill the
breakup episode (Workflow
03b_Time_Series_AR_Testing).
The result is a stacked area chart
piling up all level 2 alarms from Jan
2007 till July 2008. You can see the
alarm signal rising in March 2008
and more in May 2008.
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The idea here was to train machine learning models on signals from the
normally working rotor - because that is all we had available - and then
to compare each model predictions with the real signal to find possible
early signs of system changes. In this case an email is triggered, setting
in motion a series of mechanical checkups.

Workflows and data used for this whitepaper can be found on the KNIME
EXAMPLES server under 50_Applications/17_AnomalyDetection
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