

Guided Analytics in Action: Patent analysis from your browser¹

Greg Landrum KNIME.com AG

¹ and some other stuff

- A few more words on "What's new" and "What's cooking"
 - KNIME in the cloud
 - KNIME on Spark
- A Guided Analytics use case: patent analysis
- Quick advertisement for a workshop tomorrow

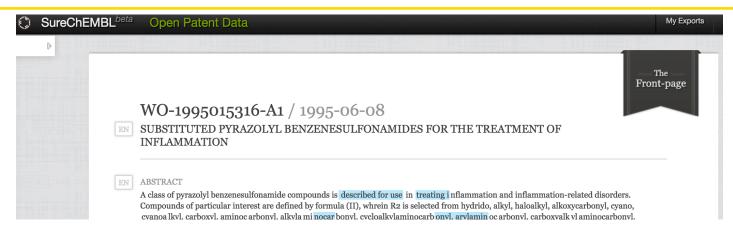
KNIME in the cloud

- KNIME Analytics platform on AWS/Azure
- KNIME Server, Server + Big Data on AWS/Azure
- Launch Hadoop/Spark clusters on AWS/Azure
- Connectors for S3, Blob Store, Azure SQL DB, Redshift

• What else should we be thinking about/working on?

KNIME on Spark

Demo

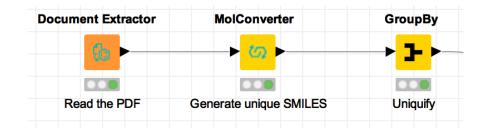

The case study: working with patent data

- Start with the PDF for a med-chem patent
- Extract the structures from the patent
- Attempt to identify the key compound

Inspired by: http://chembl.blogspot.ch/2014/11/finding-key-compounds-in-med-chemistry.html

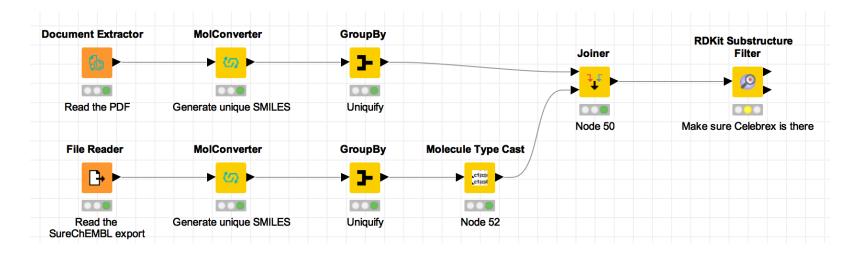
The patent

This is the patent "for Celebrex" :


One of the validation patents from:

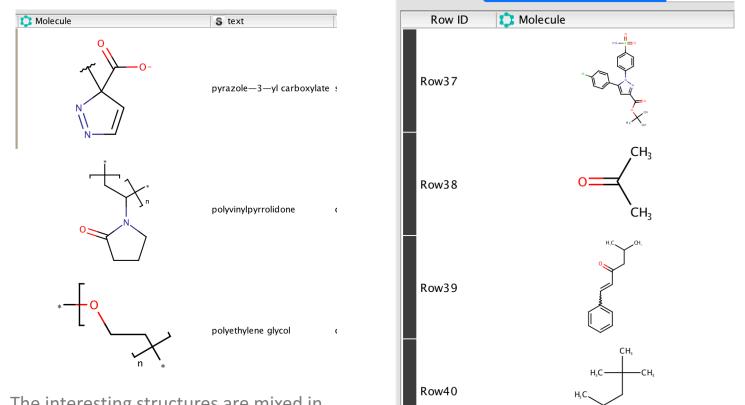
Hattori, K., Wakabayashi, H. & Tamaki, K. Predicting Key Example Compounds in Competitors' Patent Applications Using Structural Information Alone. *J. Chem. Inf. Model.* **48**, 135–142 (2008).

Extracting structures


Grab the PDF from SureChEMBL and the use the ChemAxon Document Extractor:

Let's start with a bit of validation:

Compare the Document Extractor to the structures downloadable from SureChEMBL:



Results:

- 451 structures from Document Extractor
- 548 structures from ChEMBL
- 192 are in common, and Celebrex is one of them.

Cleaning up the data

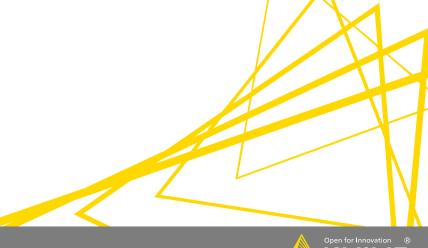
The interesting structures are mixed in with a bunch of stuff we'd rather not see

CH₃

Cleaning up the data, but with which rules?

- Some things, like removing molecules with attachment points, are obvious. But what about the other properties?
- There are multiple different ways of filtering these down to the "interesting" ones.
- Instead of picking some hard-and-fast rule, let's do it interactively using a set of reasonable properties:
 - # of heavy atoms
 - # of rotatable bonds
 - # of rings

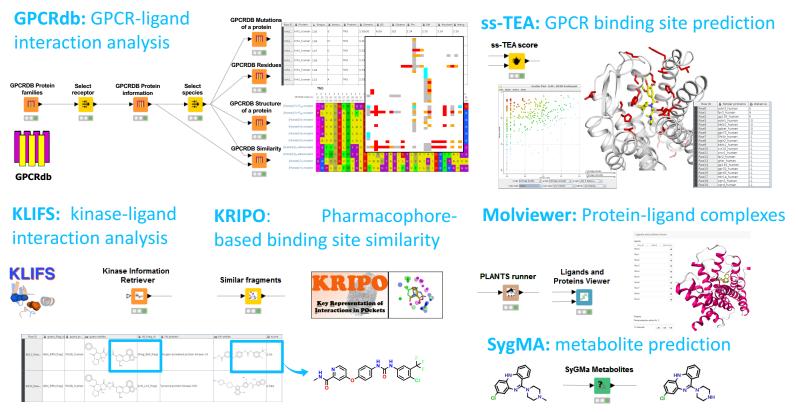
Finding the key compound in the patent


- Idea: the key compound is likely to have a lot of similar compounds
- Classic approach: find the compounds in the patent with the most near neighbors
- Alternate approach: use metrics from network analysis

Method from:

Hattori, K., Wakabayashi, H. & Tamaki, K. Predicting Key Example Compounds in Competitors' Patent Applications Using Structural Information Alone. *J. Chem. Inf. Model.* **48**, 135–142 (2008).

Advertising!



3D-e-Chem KNIME Nodes for Integrated Structural Cheminformatics Analyses and Computer-Aided Drug Discovery

Information: https://tech.knime.org/3d-e-chem-nodes-for-knime

Workshop: https://github.com/3D-e-Chem/workflows (Clone or download - Download ZIP)

McGuire, Verhoeven, Vass, (...), De Graaf. J Chem Info Model 2017, 57: 115

The KNIME[®] trademark and logo and OPEN FOR INNOVATION[®] trademark are used by KNIME.com AG under license from KNIME GmbH, and are registered in the United States. KNIME[®] is also registered in Germany.

