
 
 

 

Copyright © 2013 by KNIME.com AG all rights reserved      page 1 

 
 

Big Data, Smart Energy, and 

Predictive Analytics  
Time Series Prediction of Smart Energy Data  

 
 
 
Rosaria Silipo   Rosaria.Silipo@knime.com  
Phil Winters   Phil.Winters@knime.com  
 
 
 
 
 
  

mailto:Rosaria.Silipo@knime.com
mailto:Phil.Winters@knime.com


 
 

 

Copyright © 2013 by KNIME.com AG all rights reserved      page 2 

Table of Contents 
Big Data, Smart Energy, and .............................................................................................................. 1 

Predictive Analytics  Time Series Prediction of Smart Energy Data ........................................... 1 

Summary ................................................................................................................................................. 4 

Setting the Scene: Big data over Time..................................................................................................... 4 

The Irish Smart Energy Trials ................................................................................................................... 5 

Overview of the Approach ...................................................................................................................... 6 

Import and Transform Data ..................................................................................................................... 7 

Reading the Smart Meter Data ........................................................................................................... 7 

Sub-workflow to read all or a subset of the data ................................................................................ 8 

Accessing the same data from the KNIME Server ............................................................................... 8 

Transforming the Smart Meter Data ................................................................................................... 9 

Converting proprietary format datetime into Date and Time objects .............................................. 10 

Aggregating at different time scales ................................................................................................. 11 

Clustering Meter IDs with similar Behavior ........................................................................................... 14 

The k-Means algorithm ..................................................................................................................... 14 

Feature Selection and Normalization ................................................................................................ 14 

k-Means Settings ............................................................................................................................... 15 

k-Means Prototypes .......................................................................................................................... 16 

Cluster Learnings ............................................................................................................................... 18 

The Night Owls .................................................................................................................................. 18 

The Late Evening Clusters .................................................................................................................. 19 

All Rounders ...................................................................................................................................... 20 

Daily Users ......................................................................................................................................... 21 

Cluster Conclusions ........................................................................................................................... 22 

Time Series Forecasting ......................................................................................................................... 22 

Simple Auto-Regressive Model (no seasonality adjustement) ......................................................... 23 

Reading Data and Clustered Time Series Selection ........................................................................... 23 

The Lag Column Node ....................................................................................................................... 23 

Linear or Polynomial Regression ....................................................................................................... 25 

Seasonality Adjustment ..................................................................................................................... 27 

Visually identifying the Seasonality Patterns .................................................................................... 27 

Removing 24 hour Seasonality .......................................................................................................... 29 

Removing the weekly Seasonality ..................................................................................................... 31 

A first frame for general time series prediction ................................................................................ 32 

Big Data Effect ....................................................................................................................................... 33 

Conclusions ............................................................................................................................................ 36 

Data Science Conclusions and next Steps ......................................................................................... 36 



 
 

 

Copyright © 2013 by KNIME.com AG all rights reserved      page 3 

Business next Steps ........................................................................................................................... 37 

 

  



 
 

 

Copyright © 2013 by KNIME.com AG all rights reserved      page 4 

Summary 
One of the key topics surrounding the concept of “big data” is the availability of massive time-based 
or telemetry data.  With the appearance of low cost capture and storage devices, it has now become 
possible to get very detailed data to be used for further analysis. The very high detail resolution 
concerns mainly time. Nowadays, time streaming data can be recorded from almost any device, 
calling for interpretation to know more about the underlying system or to predict future events with 
higher accuracy.  

This work focuses on smart energy data from the Irish Smart Energy Trials, where the electricity 
usage of circa 6000 households and businesses was monitored over time via meter IDs. The goal of 
the project was two-fold: create the ability to define custom tailored contract offers and on the other 
side to predict future electricity usage to shield the electricity companies from power shortage or 
power surplus. 

The definition of 6000 (and many more in real life) customized contract offers is unrealistic. The goal 
then becomes to identify a few groups with common electricity behavior to make it worth the 
creation of customized contract offers. Therefore, the first step in this project, after importing, 
cleaning and transforming the data, was the definition of a few measures to describe each meter ID 
in terms of electricity usage behavior. Such measures were then used to group the original 6000 
meter IDs into a maximum of 30 clusters including meter IDs with similar behavior in terms of 
electricity usage. The cluster’s average time series of electricity usage values was adopted as the 
cluster time series prototype. 

As far as the second goal is concerned, i.e. the prediction of electricity consumption, a few options 
are available. The prediction could concern the total amount of energy usage; however, that might 
not be as accurate and might be too general to understand the underlying usage pattern. At the 
other end of the scale, the future energy usage could be predicted for each meter ID. This, though, 
might be overshooting the problem, because it uses an excessive amount of computational effort to 
reach a very difficult interpretation of the final results. As a compromise, we focused on predicting 
only the clusters’ prototype time series as partial values of the total electricity usage at some point in 
time. An auto-regressive model was adopted to predict each time series future based on its past. 

This project also offered a “big data” opportunity as a side effect. Indeed, the energy usage of 6000 
meter IDs, sampled every half an hour for longer than a year, produced a considerable amount of 
data, whose processing has taken quite a long time even on a dedicated and powerful machine, 
especially during the data transformation steps before clustering. To compare a classic approach with 
a big data approach, the first part of the analysis was run using also the big data engine available with 
KNIME.  

The analysis described in this paper uses both publicly available data and the open source KNIME 
platform to transform the massive quantity of data, cluster the time series, apply time series analysis, 
and then draw both predictive analytics and business conclusions from the data. While the big data 
components are not open source, they are also available for a trial if required.  All examples are 
available for download from the www.knime.com website. 

Setting the Scene: Big data over Time 
One of the key topics surrounding the concept of “big data” is the availability of massive time-based 
or telemetry data.  With the appearance of low cost capture and storage devices, it has now become 
possible and easy to actually capture this detailed data for further analysis. 

http://www.knime.com/
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Generally, telemetry based data has a time-stamp element, which calls for the application of 
advanced predictive time series analysis techniques.   Indeed, forecasting new values into the future 
alone usually produces an added commercial value to the business. However, with the right data 
analytics tool, it is also possible to combine time series forecasting with other predictive techniques, 
such as clustering or classification, generating even more insight about the data.  

This “big data” opportunity exists in manufacturing, chemical and life science, transportation, 
automotive, energy, as well as in those industries where cyber security is an issue.  This paper 
focuses on a smart energy example for the energy industry and is based on publicly available data 
and on the open source data analytics KNIME platform.  

The energy industry is an industry currently going through change.  With extremely complex 
networks, the opening up of competitors in what were earlier monopoly markets, the increased 
regulation of energy delivery and consumer pricing, and also the growing requirements for “green” 
and “safe” energy, the energy industry can not simply operate as of old.  

One positive trend is the introduction of smart meters.   Smart meters are a way for energy 
companies to both help its customers understand and manage their energy usage, but also a way for 
energy companies to better predict energy requirements down to at least the meter but in some 
cases down to the appliance or device level.  The challenge is that each device can produce 
thousands if not millions of data per day.  When multiplied by the number of smart meters being 
tracked, this can quickly enter what everyone would agree is a “big data” challenge.  One of the main 
challenges for sharing techniques around data such as smart meter data is the lack of a publicly 
available source until now.  

KNIME is an open source platform for data analytics, providing a user-friendly graphical workbench 
for the entire analysis process: data access, data transformation, initial investigation, powerful 
predictive analytics, visualization, and reporting. The open integration platform provides over 1000 
modules (nodes), including those of the KNIME community and its extensive partner network. 

KNIME can be downloaded onto the desktop and used free of charge. KNIME products include 
additional functionalities such as shared repositories, authentication, remote execution, scheduling, 
SOA integration, and a web user interface as well as world-class support. Robust big data extensions 
are available for distributed frameworks such as Hadoop. KNIME is used by over 3000 organizations 
in more than 60 countries. 

The workflows developed in this project are based on KNIME and transform the original massive 
quantity of energy data, cluster the time series, apply time series analysis techniques, and then draw 
both predictive analytic, sensible big data processing, and business conclusions from the data. 

The Irish Smart Energy Trials 
In Ireland, the Commission for Energy Regulation (CER) initiated a Smart Metering Project in 2007 
with the purpose of undertaking trials to assess the performance of Smart Meters, their impact on 
consumers’ energy consumption, and the economic case for a wider national rollout. It was a 
collaborative energy industry-wide project managed by the CER and actively involving energy 
industry participants including the Sustainable Energy Authority of Ireland (SEAI), the Department of 
Communications, Energy and Natural Resources (DCENR), ESB Networks, Bord Gáis Networks, Electric 
Ireland, Bord Gáis Energy, and other energy suppliers. This group ran trials on both gas and electricity 
smart meters.   For purposes of this white paper, we focused only on the electricity data. 

The Smart Metering Electricity Customer Behaviour Trials (CBTs) took place during 2009 and 2010 
with over 5,000 Irish homes and businesses participating. The purpose of the trials was to assess the 

http://tech.knime.org/
http://www.knime.org/partner/becoming-a-partner
http://www.knime.org/download-desktop
http://www.knime.org/products
http://www.knime.org/knime-big-data
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impact on consumer’s electricity consumption in order to  form the basis of a cost-benefit analysis 
for a national rollout. Electric Ireland residential and business customers and Bord Gáis Energy 
business customers, who participated in the trials, had an electricity smart meter installed in their 
homes/premises and agreed to take part in research to help establish how smart metering can help 
shape energy usage behaviours across a variety of demographics, lifestyles, and home sizes. The 
trials produced positive results, the reports for which are available from CER along with further 
information on the Smart Metering Project at  
http://www.ucd.ie/issda/data/commissionforenergyregulation/ . 

The detailed data underlying the electricity customer behaviour trial was made available in 
anonymised format, in order to facilitate further research and the development of competitive 
products and services, following the anticipated rollout of Smart Meters in Ireland. No personal or 
confidential information is contained in the data set.   This is the data set we used for this project. 

The data is from almost 6000 homes and businesses that participated in the trials - one smart meter 
per entity.  The smart meter generated information every half hour, 24 hours a day, and there is one 
year of data available.   In addition, pre-trial and post trial surveys were done for both households 
and businesses.  All data is available in Excel or CSV format.   

Note: While a small sample of the data is included in the downloaded examples to ensure the correct 
running of the workflows, anyone interested in further analysis on the entire dataset should request 
the data from the Irish Social Science Data Archive reported below: 
http://www.ucd.ie/t4cms/CER_energy_electric_issda-data-request-form.docx  

Overview of the Approach 
The final goal of this work is to predict energy usage for specific groups (clusters) of meter IDs.  

Thus, after reading, cleaning, and transforming the data, we need a clustering strategy to group 
together similar meter IDs. As usual, “similar” depends on the quantitative features used to describe 
the energy consumption and from the distance measure adopted in the clustering procedure. While 
many well established clustering algorithms and distance measures are available, the quantitative 
description of the input patterns is always the challenging part.  Here, we were interested in the 
trend over time of electricity usage. Thus, we measured the amount of used energy at different times 
of the day and of the week. 

After describing each meter ID time series by means of the appropriate quantitative measures and 
after grouping them together in a manageably small number of clusters, we moved to the prediction 
part.  This is a relatively new area of analytics for any platform, including KNIME. Methods, like linear 
regression or neural networks, have already been available for quite some time. However, there has 
been only a short history of applying them to time series analysis. In particular, the prediction of one 
value at time t based on N past values at times t-1,…, t-N requires a specific data 
transformation as to have past and future on the same data row. Data mining modeling can then be 
applied to such an input data table to train a predictive model.  

This is also a topic that lends itself to a big data implementation. Indeed, the time series of the half-
hourly electricity usage, spanning a bit more than a year, for circa 6000 meter IDs consists of circa 
176 millions rows. Aggregations, filtering, sorting, and measure calculations can take quite a long 
time even on a relatively well equipped laptop. Would that be a good chance then to use big data? 
For demonstrational purposes, we ran the first part of the analysis - the one where the descriptive 
measures of electricity usage are calculated - on a big data platform as well, to see how much in 
cases like this a big data implementation might speed things up.  

http://www.ucd.ie/issda/data/commissionforenergyregulation/
http://www.ucd.ie/t4cms/CER_energy_electric_issda-data-request-form.docx
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Summarizing, we implemented the following steps: 

1. Import the time series for each meter ID, clean it, and aggregate it at a daily or hourly level. 
2. Define and calculate some behavioral measures of electricity usage for each meter ID on the 

imported time series. 
3. Cluster all meter IDs on the basis of these behavioral measures, so reducing the analysis 

space from ca 6000 meter IDs to a maximum of 30 clusters. 
4. Move on to time series prediction: for each cluster create a predictive model to know future 

energy usage based on past values. 
5. Evaluate the predictive models, by measuring the prediction error for all values or only for 

energy peaks. 
6. Re-implement and re-run the behavioral measures calculation at steps 1 and 2 using a big 

data platform. 

 

In practice, we split the work over 4 workflows that can be downloaded together with this 
whitepaper from http://www.knime.com/white-papers . 

1. The “PrepareData” workflow implements step 1 and 2; that is, it imports, cleans, transforms 
the data, and calculates some descriptive measures of electricity usage per meter ID. 

2. The “k-Means” workflow groups together meter IDs with similar electricity usage behavior 
and calculates the prototype time series 

3. The “AR - *” workflows and the “NN - *” workflow all implement predictive models. First the 
seasonality pattern is detected and then removed off the time series; then the number N of 
backward steps in time is selected; and finally a predictive model is trained using the N past 
samples at the net of the seasonality pattern. 

4. Finally, the “PrepareData – DataRush” workflow re-implements exactly the same steps of the 
“PrepareData” workflow on the KNIME big data platform, provided by Actian 
(http://bigdata.pervasive.com/Products/Analytic-Engine-Actian-DataRush.aspx ). 

In the next sections, we describe each step and each workflow more in details, both in terms of 
implementation and results. 

Import and Transform Data 

Reading the Smart Meter Data 
The smart meter data is contained in 6 well defined CSV files. There we find the Smart Meter ID, the 
data collection time (every half an hour), and the amount of electricity in KW used in the half an hour 

 
Figure 1:  Overview of the Approach 

http://www.knime.com/white-papers
http://bigdata.pervasive.com/Products/Analytic-Engine-Actian-DataRush.aspx
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previous to timestamp. There is no column name in the original files. The reading and transformation 
of the data is implemented in the “PrepareData” workflow. 

Sub-workflow to read all or a subset of the data 

After looping on the 6 files, concatenating all the data, and renaming the data columns appropriately, 
we obtain the data table reported in figure 2, where “Iteration” is the iteration number in the 
reading loop on the 6 files.  

 

The first three digits of column “datetime” count the number of days starting from 1 as January 1st 
2009. The last 2 digits of “datetime” count the timestamp number updated every thirty minutes: that 
is 01 = 00:30 and 11 = 05:30. 

After reading and concatenating the files, we had 176 million rows of smart meter data information. 
As it often happens in data analysis, we corrected and run the same data manipulation/data analysis 
a few times. Reading 176 millions rows every time would have slowed down our work and tried our 
patience considerably. So, we decided to introduce the option between reading a small subset of the 
data for debugging purposes and reading the whole data set looping across the 6 files.  

This option has been implemented via an “IF Switch” block controlled via a flow variable. The flow 
variable was created and set in a “String Radio Button” quickform node assuming “partial” and “full” 
as possible values.  

The switch node is fed with the list of file paths containing the smart meter data and produced by a 
“List Files” node. The flow variable value “partial” enables the bottom branch of the switch block to 
read only the first N rows of the first file of the list. On the opposite the flow variable value “full” 
enables the top branch of the switch block to loop on all 6 files, read their content, and concatenate 
the results in the “Loop End” node. This sub-workflow implemented to read the smart meter data is 
shown in figure 3. 

Accessing the same data from the KNIME Server 

The data used for this project is quite hard-disk consuming. Copying that from personal laptop to 
personal laptop is then not only time but also resource consuming. In cases like this, holding the data 
on a shared platform is advisable. In this particular case, we kept the data on a KNIME Server to be 
available to all KNIME users. Accessing the data from the KNIME Server rather than from the local file 
system required substituting the “List Files” node in figure 3 with the little sub-workflow shown in 
figure 4.  

The “List Files” node indeed cannot access URLs, that is, it cannot access the KNIME Server URL 
either. To define the data file URL on the KNIME Server, we need an “Explorer Browser” node that 
explores all connected KNIME Servers and outputs the selected path using the “knime:” protocol. For 
example, to read our files from the KNIME Server named “KNIME05” and located in workflow group 
“Rosaria/timeseries”, the URL    “knime://KNIME05/Rosaria/timeseries/” was used. 

 
Figure 2:  Structure of the Smart Meter Data 
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Combining such URL with the list of file names allows to refer to the data file URLs on the shared 
KNIME Server and to feed the switch node with the same list of file paths as from the “List Files” 
node. 

 

 

The sub-workflows shown in figures 3, 4a, and 4b were collapsed into the first metanode of the 
“PrepareData” workflow, named “Read all data”. 

Transforming the Smart Meter Data 
The files contain a proprietary date/time format, as described in the previous section. The first three 
digits of column “datetime” count the number of days starting from 1 as January 1st 2009. The last 2 

 
 

Figure 3:  Sub-workflow to read the smart meter data 

           
Figure 4a: The data on the KNIME server     Figure 4b: Sub-workflow to read the smart data from the server 
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digits of “datetime” count the timestamp number updated every thirty minutes: that is 01 = 00:30 
and 11 = 05:30. 

Converting proprietary format datetime into Date and Time objects 

The first step in transforming the data is then to convert the “datetime” data column to a standard 
datetime format. First the “datetime” string is split into the time and the date part. Then, from the 
time part, two “Math Formula” nodes extract respectively the hours and the minutes and a “Java 
Snippet” node concatenate the two values together to reach the “hh:mm” format.  

A second “Java Snippet” node uses the Java Date library to convert the date part of the “datetime” 
data column into a Date object, starting from January 1st 2009, with format “dd.MM.yyyy”.  The 
configuration window of this “Java Snippet” node, including the java code used for the date 
conversion, is reported in figure 5. 

 

After this transformation, two new data columns appear: one named “date” and one named “time”, 
containing respectively the date and time of the smart meter measure. Finally, all data rows are 

 

          
Figure 5: “Java Snippet” node to convert the progressive number of days into a date value formatted as 
“dd.MM.yyyy” 
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sorted by meter ID, date, and time, creating the time series of the used energy for each half an hour 
(“KW/30”) for all meter IDs.  

This is, so far, the minimum transformation required, affecting only the datetime format and sorting 
the resulting rows. This transformation can be found in the metanode named “String to datetime”. 

Aggregating at different time scales 

At this point, we still needed to transform the data, to create some descriptive measures of the 
smart meters electrical behavior and of the times series values to use for prediction.  

In order to exhaustively describe the energy usage of each meter ID, we would like to produce an 
energy measure on many different time scales: hourly, monthly, daily, yearly, etc … So, the next step 
in data transformation is the extraction of time key metrics such as day, day of week, hour, month, 
year, and so on. The “Time Field Extractor” and the “Date Field Extractor” nodes have been used to 
perform these operations on time and on date respectively (Fig. 6 and 7). 

 

Now, having produced all the necessary time scales, we aggregated the energy values (“KW/30”) by 
hour, day, week, month, and year. This produced new time series with the energy used each hour, 
day, month, year, etc … by each meter ID. These time series can be used to predict the energy 
consumption for that meter ID for the next hour/day/month given the energy used in the previous N 
hours/days/months. 

At the same time, we calculated some average measures to quantify how much energy each meter ID 
uses per hour, per day, per month, per year in average. The overall average electricity usage by day, 
week, month, and year was then calculated for each meter ID.  

Both operations are implemented in the “Daily, Monthly, Yearly, Weekly” and “Hourly, Intra-Day” 
metanodes. At the end of all these parallel transformations (segmentation of time series and 
calculation of average energy values at different time scales), the resulting average values are joined 
together. 

           
Figure 6: Configuration window of the “Date Field Extractor” node, set to get year, month, day of month, and 
day of week from the data column “date”. 
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However, even if we know that a meter ID “x” uses an average energy amount “y” per week, this still 
does not tell us how this energy is distributed across the week; for example, some meter IDs might 
show a difference between business days and week end days in energy usage. The same is true for 
the average daily value of energy consumption: the average daily value does not tell us how the 
energy usage is distributed across the daily 24 hours. Some meter IDs might use more energy at 
night, while others might show a more clear business hours trend.  

Another descriptive measure can be the percentage of energy usage in different time slices of the 
day with respect to the energy used in the entire day (Fig. 9).  Similarly, the percentage of energy 
usage at different week days with respect to the energy usage during the whole week can represent 
another behavioral measure. One additional meta-node, named “% values”, calculates the intra-day 
and intra-week percents of kW usage by meter ID (Fig. 11). 

           
Figure 7: Configuration window of the “Time Field Extractor” node set to get hours and minutes from the data 
column ”time”. 

           
Figure 8: This sub-workflow creates the time series with the daily electricity usage values and their average 
daily value (in “Daily, Monthly, Yearly, Weekly” metanode). The time series with the daily values can be used 
for prediction, while the average of the daily values can be used as a behavioral measure to cluster the meter 
IDs. 
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Allthough not required, all resulting data tables are written out as CSV files to facilitate further 
learning and exploration.  Even here, data can be written to the KNIME Server using the KNIME URL 

           
Figure 9: This sub-workflow, contained in the “% values” metanode, calculates the percentage of the daily 
electricity usage in the different day slices: early morning, morning, afternoon, late afternoon, and night. 

           
Figure 10: Sub-workflow to write resulting data to a temporary directory first and to the final folder on the 
KNIME server afterwards (“Write to Server” metanode). 

 

          
Figure 11: The complete workflow “PrepareData” 
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protocol. In this case, we write the data to a local temporary directory using the “Create Temp” 
node, and afterwards we use the “Explorer Writer” node to transfer this local temporary file to a URL 
location on the KNIME Server (Fig. 10). This sub-workflow is collapsed into the “Write to Server” 
meta-node. 

The final “PrepareData” workflow, implementing the data reading and the described 
transformations, is reported in figure 11. 

Clustering Meter IDs with similar Behavior 
One of the goals of this project was to define customized contract offers based on different 
behaviors in electricity usage. However, the definition of 6000 (and many more in real life) 
customized contract offers is unrealistic. The goal, then, was changed into the identification of a few 
groups with some particular electricity usage behavior to make it worth it the tailoring of a 
customized contract offer.  

After importing, cleaning and transforming the data, a few average and percentage measures were 
defined to describe each meter ID in terms of electricity usage behavior (see previous sections). Such 
measures were then used to group the original 6000 meter IDs into a maximum of 30 clusters, each 
one including all those meter IDs that behave similarly in terms of electricity usage.  

The k-Means algorithm 
To group together meter IDs based on similar behaviors, the k-Means algorithm was used. The k-
Means algorithm is by now a very well established clustering technique and KNIME has a k-Means 
node set which is easy to train and to apply. 

Feature Selection and Normalization 

Of the created input features only some have been fed into the k-Means algorithm. Indeed, the goal 
was to cluster together meter IDs on the basis of average values and daily and weekly distribution 
values of the electricity usage.  The features available were: 

- Average and percentage values of used energy on each week day from Monday through 
Sunday 

- Average and percentage values of energy used during five different day sements: early 
morning (7h-9h), morning (9h-13h), early afternoon (13h-17h), late afternoon (17h-21h), 
night (21h-7h) 

- The total energy used over the test time in kW 
- The average yearly, monthly, weekly, daily, and hourly used energy in kW 
- The average energy used over the weekend (WE) and over business days (BD) 

In general, if we used a percentage value, we excluded the corresponding average value. For 
example, if the percentage of electricity usage on Mondays has been fed into the k-Means algorithm, 
the average electricity usage on Mondays has not been used. This is to avoid that the Monday values 
influence the clusterization process more than the other variables. The final set of features for the k-
Means algorithm excluded the average values of energy used during week days and the average 
values of energy used at different times during the day. All other features have been kept for the 
clusterization process. 

Since the k-Means algoritm is a distance based technique, all input features need comparable ranges: 
that is, they need to be normalized. A “Normalizer” node was introduced and a “min-max 
Normalization” into the [0,1] interval was applied on all data columns.  
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k-Means operates on numerical values. Possible nominal values need to be discretized if to be used 
in a k-Means algorithm. This is not our case, since the data set we are working on is just numerical. 
Also, k-Means cannot work on missing values. We changed the missing numerical values, if any, into 
0. It is highly unlikely that a meter ID has a 0 energy consumption. So, the 0 value can be used to 
represent missing values. The risk here is that low energy usage households can be grouped together 
with other entities with many missing values. 

k-Means Settings 

After normalization, the k-Means node could be applied with the configuration settings reported in 
figure 12.  

 

A maximum of 30 clusters was set. Indeed, more than 30 profiles would make the number of 
customized contracts unmanageable. On the other side, hopefully, “30” is a high enough number to 
capture most similarities among meter IDs electricity behaviors. 

The distance chosen was the Euclidean distance which produces round clusters with patterns equally 
spaced from the cluster center.  

The maximum number of iterations was fixed to 400. This is a stop criterion just in case the algorithm 
does not converge in a reasonable time.  

After execution, if we open the resulting clustering model (right-click k-Means node and select “View: 
Cluster View”), we can see the 30 clusters that were created (Fig. 13):  some of them cover a large 
number of meter IDs, some only a few. Probably the large clusters are the most interesting ones, 
since they group a large number of meter IDs with similar properties. 

Each cluster is represented by a prototype and a prototype consists of the average features 
calculated across all meter IDs assigned to that cluster. After applying a k-Means algorithm, the 
cluster view of the k-Means node shows the clusters in the normalized feature space. It is always 
useful to extract the prototypes and denormalize their features back into the original ranges in order 
to investigate the detected data groups.  

The “k-Means” node can be found in the “first n clusters” metanode in the “k-Means” workflow. 

  
Figure 12. Configuration settings of the “k-Means” node 
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k-Means Prototypes 
In order to extract the prototypes features, we relied on the “XML” extension of the KNIME platform. 
The XML extension includes a number of nodes and a new data type to deal with XML structures. The 
new data type is an XML cell, containing a full XML structure. The XML nodes allow to read, write, 
convert, combine, and of course parse XML data columns.  

In addition, all data mining models produced by KNIME nodes are exported in PMML format, which is 
a variation of the XML format. Besides the XML extension, KNIME offers also a number of PMML 
related nodes, to convert, read, write, and manipulate PMML structures. Since the cluster model, like 
all other models, is exported in PMML format - that is in XML format - we used a combination of the 
PMML and XML nodes to extract the prototype features from the cluster model.  

First, a “PMML to Cell” node imports the cluster model into a data table cell. Subsequently a number 
of “XPath” nodes, from the XML category, extract cluster name, size, and prototype feature values 
from the model. The feature values of the cluster prototypes are then denormalized via the 
“Denormalizer” node to go back to their original range values.  

  

          
Figure 13. The clusters resulting from running the k-Means algorithm 
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The whole sub-workflow contained in the “first n clusters” metanode and implementing the k-Means 
algorithm, including normalization, denormalization, and prototype feature extraction, is shown in 
figure 14. 

 

 

The final goal is to predict future energy usage based on past energy usage. However, we do not 
want to implement a predictive model down to the meter ID level. It would be enough to detect 
temporal trends in some of the major clusters detected with the k-Means algorithm. For each cluster, 
then, the average time series was calculated and used as the cluster representative time series, the 

  
          

Figure 14: Sub-workflow to cluster the meter IDs via k-Means in the “first n clusters” metanode 

 
Figure 15: Workflow “k-Means”: running k-Means and creating prototype time series for each cluster  
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cluster time series prototype. The final “k-Means” workflow, including the k-Means cluster detection 
and time series prototype generation, is shown in figure 15. 

Cluster Learnings 
Some interesting clusters emerge from the analysis described in the previous section with 4 main 
groups, as shown in the following tables.  

The Night Owls 

The night owls use electricity mainly at night and just a little during the day. Meters in cluster 1, in 
particular, spend more than half of their (high) energy during the night. From cluster 19 to cluster 8, 
the percentage of electricity usage decreases at night to become higher in other segments of the 24 
hours.  

A low average energy usage per day and per hour indicates a household or a very small business. On 
the opposite a high average energy usage per hour and per day indicates a larger business. The 
higher the average used energy the larger the business. Clusters in this group have a various 
composition: some consist of many private, late evening active households, probably with teenagers 
or students (cluster 19 to 8); cluster 1, on the opposite, covers a lower number of meter IDs all 
identifiable as medium sized night active businesses.  

 
 

 

The hypothesis of businesses (cluster 1) vs. households (other clusters) is confirmed by the 
percentages of energy usage per week day. Cluster 1 is mainly active during business days and 
consumes less energy over the weekend. On the opposite, the other cluters do not really show a lot 
of difference amongst week days: every day they use more or less the same amount of electricity. If 
small businesses are included in cluster 19 to cluster 8, those must be businesses working 7 
days/week. 

 
Table 1. Average and percentage values of electricity usage over the 24h for the “night owls” clusters 

 
Table 2. Average and percentage values of electricity usage over the week days for the “night owls” clusters 
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Clusters in this group also show a different daily rhythm. Cluster 1 is really active only at night, cluster 
19 and cluster 13 extend their late evening activity into the late night, and cluster 25 and cluster 8 
show some activity during the day as well. These different daily rhythms probably reflect the 
household composition. 

Notice that cluster 13 has a low usage of energy on Saturdays. The difference is very small and might 
be not significant. However, it is a fact that might deserve a little deeper investigation. 

The Late Evening Clusters 

A second group of clusters consists of “late evening” smart meters. These clusters contain meter IDs 
that are considerably active in the late afternoon, after working hours. Some of these clusters extend 
their electrical activity into the night (clusters 3 and 4). 

This group seems to include only households (low average daily and hourly electricity usage). Only 
clusters 17, 9, and 29 show a greater energy usage during the day. All other clusters seem to activate 
only after 17:00. Table 4 with the percentages of used energy over the week days confirms the 
hypothesis that all those meter IDs refer to households. Indeed there is no difference in used energy 
among weekdays and just a little increase over the weekend. 

 

Finally, this group includes only very general clusters, with at least 100 meter IDs each. Households 
represent probably the most frequent type of energy entity associated with a meter ID. Clusters 
grouping households with similar electrical usage have to include a high number of meter IDs. 

Comparing with clusters in the previous group, it is interesting to notice that while businesses seem 
to reduce, though slightly, the electricity usage over the weekend, most households seem to increase 
electricity usage, even if just a bit, over the week end. 

 
Table 3. Average and percentage values of electricity usage over the 24h for “late evening” clusters 
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All Rounders 

This third group is made of clusters with meter IDs with a more equally distributed usage of 
electricity throughout the 24 hours. Smart meters in this group use more energy during the day if 
compared to smart meters in the previous two groups. Only a few clusters (clusters 14 and 11) use as 
much energy at night as during the day. All other clusters show a clear higher activity during the day 
than at night. Some use more energy in the late evening (cluster 14), some more during the day 
(cluster 10), some even in the early morning (cluster 11), and some in every segment of the day 
indistintly. 

 
 
Considering the average energy usage per day and per hour and the energy usage temporal pattern, 
these clusters are certainly covering large (clusters 5 and 12) businesses active during the day and 
still running machines at night as well as households (all other clusters) with household members 
with different electrical habits. Cluster 12, for example, contains very large businesses, with more 
than 500 kW used in average per day. The other clusters more likely represent private households. 

 
Table 4. Averages and percentages of electricity usage over week days for “late evening” clusters 

 
Table 5. Average and percentage values of electricity usage over the 24h for “all rounders” clusters 
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In this group we have big and small clusters. Cluster 11 for example, the one with the early morning 
people, contains only 15 meter IDs. On the opposite, cluster 15 with energy distributed equally 
across the 24h collects more than 400 meter IDs. 

Considering now the distribution of electricity usage over the week, we see again that only 
businesses show a considerable reduction of energy usage over the weekend. Cluster 24, on the 
opposite, shows a very low usage of energy during business days to increase it considerably over the 
weekend. 

 

Daily Users 

This last group contains meter IDs with a high daily usage of electricity, both in the morning and 
afternoon, and a reduced usage of electricity at night.  

 
 
Besides a day vs. night pattern, most smart meters in this group show a clear business days vs. week 
end pattern. For those clusters, the used energy is concentrated during the business days, while it is 
heavily reduced during the weekend. Cluster 2 and cluster 8 are the exceptions to this trend. By now, 
we have learned that inflection in used energy over the weekend describes a business more than a 
household. While the high average used kW per hour and per day of clusters 28 and 26 clearly 
indicates large businesses, the relatively low average used energy per hour and per day of clusters 

 
Table 6. Average and percentage values of electricity usage over week days for “all rounders” clusters 

 
Table 7. Average and percentage values of electricity usage over the 24h for “daily users” clusters 
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18, 21, and 23 indicates small businesses meter IDs, active during business hours from Monday to 
Friday and closed at night and during weekends. 

 

Cluster Conclusions 
What is fascinating is that, without any a priori knowledge, we are able to categorize types of users 
based on energy usage across the week and day as well as their average daily and hourly KW usage.  

In general, the low average used energy indicates a household rather than a business. Households 
have different hbits: from late evening energy usage to early morning and daily energy usage, 
probably depending on the household members habits. A household with students or teenagers 
would probably belong to the “nightly owls” group, a household with more mature working people 
would take us into the “daily users” group, and a household with mixed occupants would probably 
end in the “all rounders” group. 

A sudden drop in energy usage at night and especially over the weekends indicates a business. The 
amount of average daily and hourly energy is a strong indicator of the business size: the bigger the 
average used electricity the bigger the size of the business. Business clusters are found in all groups, 
besides the “late evening” group. 

Time Series Forecasting 
Time series forecasting in the energy industry is an extremely important asset.  It is used hourly to 
forecast peaks in demand and redundancy in production. It is used daily to forecast energy usage and 
therefore optimize scheduling and allocation. It is used weekly to customize energy purchase policies 
and to tweek maintenance routines. It is used on a monthly and yearly basis to drive production, 
network balancing, and strategic planning.  

Bunn and Farmer’s report shows that a 1% increase in forecasting accuracy could yield estimated 
savings in operational costs of approximately 10 million pounds. Exactly to get that 1% improvement 
or more in forecasting the total energy usage, in this section we start a journey into time series 
prediction by investigating a few different models, an auto-regression and a neural network model, 
different seasonality indeces, and trying to identify the best time lag for prediction. 

In order to predict the global value of energy usage at time t in Ireland, we have many options. We 
can work on the one time series of total energy usage. Alternatively, we can fragment our prediction 
problem into many smaller problems, like predicting each single meter ID value of energy usage at 
time t. One approach might be too approximate, since predicting the energy usage for the whole 

 
Table 8. Average and percentage values of electricity usage over week days for “daily users” clusters 
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nation might be a too complex problem. The other approach though might be too detailed. In fact, 
while it is likely that predicting single time series is easier, predicting millions of time series at the 
same time might be overkilling the problem with an excessive amount of computational power.  

From the k-Means algorithm applied in the previous section, however, we have a few clustered time 
series available, representing meter IDs with similar behavior. A good compromise between the two 
approaches above then could be the prediction of the clustered time series: the forecasting problem 
is broken into 30 easier sub-problems and forecasting 30 time series is not as computationally 
expensive as forecasting millions of them at the same time. Forecasting a time series representing a 
cluster of homogeneous meter IDs is probably easier than forecasting the total time series coming 
from all possible and dishomogeneous meter IDs in Ireland. At the same time, predicting the 
clustered time series is hopefully almost as accurate as predicting each time series by itself, since the 
clustered time series is the result of many time series with similar trends. 

Simple Auto-Regressive Model (no seasonality adjustement) 
The first and easiest algorithm available for time series prediction is the auto-regressive model. The 
auto-regressive model uses the past of the same time series to predict its future values: this is the 
“auto-“ part of the model. That is, given a time series x(t), we use x(t-1), x(t-2), …, x(t-N) 
to predict x(t). In a simple autoregressive model, we assume no seosonality and the time series to 
be stationary.   Let’s see now how we implemented an auto-regressive model with KNIME.  

Reading Data and Clustered Time Series Selection 

First, we accessed the file with the clustered time series via a classic “File Reader” node.   

Secondly, a “Sorter” node sorted the rows by ascending timestamp value. This is to ensure the time 
series character with a meaningful time order. 

Since we wanted to work on each clustered time series seperately, we used a “Column Filter 
Quickform” node to select just one clustered time series for transformation and further investigation.  

The Quickform node extracts the column headers of the one or more selected data columns from the 
input data, though producing an empty data table. For the real column filtering, we then used a 
“Concatenate” node with the “Use Intersection of Columns” option enabled.  

Finally, to be completely independent in future operations from the selected data column name, a 
“Column Rename (Regex)” node was introduced to change the current name of the data column into 
a more general “cluster”. A “Column Rename (Regex)” node was chosen, because the search string 
identifying the column name to be replaced can be controlled via a flow variable, in this case the flow 
variable output by the Quickform node and containing the selected column original name. 

All nodes were then encapsulated into a metanode named “PrepareData”. Metanodes are usually 
not configurable, besides when they host a Quickform node. In this case, the Quickform GUI is passes 
into the metanode configuration window. Figure 16 shows the metanode sub-workflow and 
configuration window to select one or more of the available clustered time series. This meta-node 
was reused in all the following more refined prediction models implemented for this project. 

The Lag Column Node 

Once the time series had been selected, sorted, and clean, we put it’s past and future on a single row 
in order to train the subsequent model. A new node has been made available in KNIME 2.8 to shift 
columns up and down: the “Lag Column” node. We used this delay node to shift and lag the data 
column, effectively pulling up the previous records into the current record.  
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The node has three parameter settings: the column to lag, the lag, and the lag interval.  

The column to lag is the time series column, for which to build the past and future record.  

A lag interval P produces two data columns: x(t) and x(t-P). x(t-P) is a copy of x(t) shifted in 
time P steps ahead. A lag interval 1 leaves the input data table unaltered. This means that only lag 
intervals higher than 1 make sense. 

A lag N produces N data columns 1, … N steps behind in the past, x(t-1), x(t-2), …., x(t-
N), in addition to x(t). 

A lag Interval P and a lag N combined together produce the following data columns: x(t-P), 
x(t-2*P), …., x(t-N*P), and x(t). Figure 18 shows how the input time series is 
transformed by applying a lag interval = 4 and a lag = 3.  

 

 
 

 
Figure 16: Sub-workflow and configuration window of the “PrepareData” metanode 

 
 
Figure 17: The „Lag Column“ node 
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At this point we did not worry about seasonality, we just applied a brute force auto-regressive model 
to see its prediction potentials. The lag interval in the “Lag Column” node was then set to 1; this 
means that no periodicity or seasonality was considered for the analysis. 

Having decided to ignore seasonality for now, the next question would be “how much back in the 
past do we need to go to have a meaningful model?”. Would just the previous value be good enough 
to predict the current value? Good enough of course depends on the error that we are available to 
tolerate. That is: how big does the lag in the “Lag Column” node need to be to get a prediction error 
below a given threshold? Since we do not know what an acceptable error is, we have defined a 
measure for the prediction error and we have experimented with a few possible lags: 1, 3, 5, 7, and 
10 lag values back in the past. 

Linear or Polynomial Regression 

After lagging the data for the selected clustered time series, a model needed to be trained using the 
past to predict the future. In a simple auto-regressive model we can use either a linear or a 
polynomial regression. First we splitted the data into a training and a testing set, then we used the 
lagged columns with “past values” as input to model the current value. The process is represented in 
figure 18. 

 

After training, for each sequence of past values the model predicts the current value. As an example, 
the plot of the predicted time series coming from the regression model vs. the real values for one of 
the available clusters is shown in figure 19.  

The prediction seems already pretty good, roughly following the original time series in its temporal 
trends. In order to really know how good the prediction is, we still needed an error measure. A 
classical error measure is the Mean Square Error (MSE). We calculated the MSE with 2 nodes. A 
“Math Formula” node calculated the squared difference between the original and the predicted 
value and a “GroupBy” node produced the average over time of these squared differences. The 
training process and the MSE calculation were wrapped into a metanode, named either “Linear 
Regression” or “Poly Regression” depending on whether the linear regression or the polynomial 

 
Figure 18: Training the Auto-Regressive Model using linear regression 
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regression had been used as a training algorithm. This metanode produced two output data table: 
the one on the top with the predicted and the original time series and the one on the bottom with 
the MSE calculated for the two time series and across the whole time window. 

The complete workflow implementing the auto-regressive model to select and predict a time series 
with no seasonality adjustment is shown in figure 20. 

 

 

 

 
Figure 19: An Auto-Regressive Predicted Time-Series (light blue) vs. the corresponding Original Time-Series 
(red) 

 
Figure 20: Workflow „AR Simple” implementing a simple auto-regressive model 
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Seasonality Adjustment   
The auto-regressive analysis described in the previous section was just a first step. The analysis could 
be improved further by removing the seasonality from the time series.  Energy data can include many 
types of seasonality: a winter vs. summer, a weekly, and even a daily seasonality.  

If a time series has a 24-hour periodicity (or seasonality), this means that there is a 24-hour repeating 
pattern. If this pattern is identified and then removed from the time series, we only need to predict 
the deviations of the time series values from the repeating pattern, which might be easier to model. 
The problem now is split in two parts: we identify the repeating pattern (seasonality) and we remove 
it from the original time series, and then we train a model to predict the difference values. 

Visually identifying the Seasonality Patterns 

Specific algorithms exist to discover the best approximation for the data seasonality. However, for 
this first time series project, we decided to just visually inspect the seasonality trend. Let’s plot, for 
example, the time series representing cluster 21 in the “Daily Users” group. 

On a full scale (Fig. 21), from July 15th 2009 to January 1st 2011, it is easy to see the winter/summer 
seasonality. Notice that not all clustered time series show this winter vs. summer seasonality. Some 
clusters show no big difference in electricity usage between summer and winter.  

The Christmas breaks are also easy to spot for this cluster. Considering these Christmas breaks and 
the medium-low electricity usage during business hours and business days (see tables 7 and 8), this 
cluster is likely to group together small businesses rather than households. 

 

If we look at the same plot using a smaller time window (Fig. 22), the weekly seasonality emerges 
clearly. Saturdays and especially Sundays are characterized by a very low usage of electricity 
throughout the day, while business days exhibit a higher usage of electricity and a similar usage 
pattern throughout the week. Almost all clusters show, more or less evidently, a weekly seasonality, 
that is a repeated pattern covering a week. Only a few clusters show no weekly seasonality, i.e. every 
day is similar to the next or there is an unpredictable pattern of electricity usage for every day of the 
trial period. 

 
Figure 21: Cluster 21 Time-Series on a full time scale 
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Concentrating on an even smaller time window, for example on a one-week time window, the daily 
seasonality also emerges clearly. In this case, every business day starts around 7:00 and ends around 
20:00. Saturday and Sunday the business is inactive, electrically speaking. 

 

 

A 24h seasonality emerges also from the auto-correlation matrix calculated over a 24 hour window of 
the time series. The auto-correlation is calculated using the “Lag Column” node, with Lag Interval = 1 

 
Figure 22: Cluster 21 Time-Series on a time scale of a few weeks. 

 
Figure 23: Cluster 21 Time-Series on a time scale of a few weeks. 

 
Figure 24. Workflow for the Calculation of the Auto-correlation Matrix 
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and Lag = 24, followed by a “Linear Correlation” node (Fig. 24). The auto-correlation matrix for 
cluster 21 is shown in figure 25, which shows a repeating pattern over the 24 hours. 

 
 

Removing 24 hour Seasonality  

Our initial focus is on the 24-hour seasonality, since it is the easiest to observe and to calculate. 
There are many ways to introduce a 24 hours template for seasonality adjustment: 

- The first 24hours in the whole time series 
- The average 24 hours on the training set 
- The previous 24 hours before current time t 

The first 24-hour of the time serie is probably the least accurate method, because it is just a lucky 
guess. If the first 24 hours in the time series are not typical for the rest of the time series, the 
seasonality adjustment using this pattern will be less than accurate. Using the average 24 hours of 
the training set might also be misleading, because averaging 24 hours windows from summer and 
winter all together might be inaccurate. The previous 24 hours are probably the most accurate 
representation of the daily rhythm, since things change gradually over time.  

We produced workflows to remove the 24 hour seasonality for two of the above listed seasonality 
patterns: the first 24 hours of the time series, the previous 24 hours for each 24 hours window in the 
time series. In both cases, the 24h pattern is created and removed from the subsequent day(s). The 
linear regression model is then trained on the differences between the current pattern and the 
seasonality pattern.  

Figure 26 shows the workflow “AR - first 24h”, which removes the first 24 hours of the time series 
from every subsequent day in the time series and trains a simple linear regression model on the 
remaining values. After lagging and predicting the time series, a new meta-node, named “re-build 
signal” takes care of reintroducing the removed 24-hour pattern into the predicted signal. 

 
Figure 25. Auto-correlation Matrix for the time series of cluster 21 
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Similarly the workflow “AR - previous 24h” adjusts the time series values by removing the previous 
24h from each 24h window (Fig. 27). Again, a simple linear regression model is then trained on the 
remaining values. 

This workflow uses a “Lag Column” node to get a copy of the time series from the 24 hours before 
the current time t (Lag Interval = 24) and a “Math Formula” node to subtract the value at time t-24h 
from the current time series alue at time t. Also here, after lagging and predicting the time series, a 

 
 
Figure 26: Workflow „AR – first 24h” removes the first 24h values from every day in the time series. 

 
 
Figure 27: Workflow „AR – previous 24h” removes the previous 24h values from every day in the time series. 
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new meta-node, named “re-build signal” takes care of reintroducing the removed 24-hour pattern 
into the predicted signal. 

Removing the weekly Seasonality 

However, the 24 hours is not the only seasonality observed in the time series. There is also a weekly 
and a yearly seasonality. Since our data includes only a bit more than a year, we are going to ignore 
the yearly seasonality. We cannot ignore though the weekly seasonality.  

 

In order to model the weekly seasonality, we just extend the “AR – previous 24h” workflow to 
remove the values from the previous 24 * 7 hours time window from the current 24 * 7 hours. The 
resulting workflow is shown in figure 29.  Here, the “Lag Column” node copies and shifts the time 
series 24*7 samples backwards; then the “Math Formula” node subtracts the x(t-24*7) values 
from the current time series x(t) values; finally, the meta-node named “re-build signal” puts the 
one-week long template back into the predicted signal. 

Removing the previous week value x(t-24*7) from the current week value  x(t) produces the 
signal shown in figure 29, with the blue line being the moving average on a moving window of 21 
samples. An extract of one predicted time series, using the linear regression model, is shown, 
together with the original time series, in figure 30. 

How good this prediction is, we can only say via the Mean Squared Error implemented inside the 
linear regression metanode. Prediction MSE values vary between 0.01 and 30, depending on the 
clustered time series. However, time series showing bigger consumed energy, also show bigger MSE 
values. Using the relative MSE error as the MSE divided by the average hourly value of used energy 
expressed in percent, we get a more realistic measure of the prediction quality. Prediction errors 
then range between 1% and 10%. 

For most clustered time series, the weekly seasonality adjustment brings the biggest improvement in 
prediction quality. A few clusters though show no need for seasonality adjustment; others show the 
best prediction improvement with a daily seasonality adjustment. Optimizing the prediction model 
for each clustered time series produces a better estimation of the energy used over all in Ireland. In 

 
Figure 28: Workflow „AR – 24x7” removes the previous week values from each week in the time series. 
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addition, concentrating on improving the prediction of the clusters with large usage of electricity 
might influence even more the overall prediction quality. 

 

 

A first frame for general time series prediction  
In the previous section we have seen how to implement an auto-regressive model to predict future 
time series values using linear regression and seasonality adjustment. However, the frame 
implemented derives a more general character from the KNIME modularity. Indeed, the same frame 
can be used with any other numerical data mining model. The linear regression model, for example, 
could be changed with a multilayer perceptron in the “Linear Regression” meta-node (Fig. 31).  

Since the “RProp MLP Learner” node (the node that implements the Multilayer Perceptron in KNIME) 
accepts only numerical values between 0 and 1, a normalization and a denormalization nodes were 
introduced to train the model and to rebuild the time series respectively (Fig. 32). As you see, the 
work load necessary to update the original workflow to a neural network based predictor has been 
minimal. In general, this frame (workflow) could be easily extended to include more complex 
seasonality effects, moving averages, and more powerful prediction techniques.   

 
Figure 29: Time series values adjusted for weekly seasonality in red and its moving average in blue. 

 
Figure 30: Original time series and predicted time series after being adjusted for weekly seasonality in green 
and blue respectively. 
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Big Data Effect 
This entire example was run using KNIME open source (www.knime.com) on a 4 core laptop with 
8GB RAM. All workflows used in this project contain an incredible amount of data manipulation and 
transformation. In particular, the first workflow, named “PrepareData”, performs a number of 
aggregations, conversions, and sorting operations on the original 176 millions rows.  This, while done 
effectively, did take hours to process. For example, only the “Sorter” node, sorting rows by time in an 
increasing order, was executing in 5 hours. 

With the advent of low cost hardware and infrastructure such as Hadoop, we have now the option of 
saving a considerable amount of time. It is, of course, possible to implement KNIME on Hadoop and 
combine together these two pieces of the open source world. However, if you do not have the time 
or the inclination to proceed with this new in-house implementation, you can turn to the Actian 
DataRush (soon to be DataFlow) engine (http://bigdata.pervasive.com/Products/Analytic-Engine-
Actian-DataRush.aspx). The DataRush engine is a high performance parallel engine designed for use 

Figure 31: Time Series Prediction using a MultiLayer Perceptron 

Figure 32: Time Series Prediction using a MultiLayer Perceptron 

http://www.knime.com/
http://bigdata.pervasive.com/Products/Analytic-Engine-Actian-DataRush.aspx
http://bigdata.pervasive.com/Products/Analytic-Engine-Actian-DataRush.aspx
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on distributed platforms, such as Hadoop. The DataRush engine has also a KNIME extension, which 
includes a set of proprietary nodes for high speed parallel data processing. 

While KNIME Desktop is free of charge, DataRush is one of the commercial third-party extensions of 
KNIME, i.e. a commercial license is required. A temporary test license might be available on demand 
from Actian’s web site. DataRush extension for KNIME can be installed as any other KNIME extension 
via the “Help/Install New Software” or the “File/Install KNIME Extension” options. Installation is quick 
and easy and produces a new KNIME category in the Node Repository panel named Actian 
RushAnalytics.  

Figure 33 places KNIME and DataRush on a scatter plot according to their respective strengths, i.e. 
speed vs. analytics. So, while KNIME is positioned at a high value for analytics sophistication, 
DataRush products occupy the lower part of the graphic with higher execution speed. This graphic 
shows the complementarity of the two engines.  

 

The blue/brown separation in the figure also indicates what is worth to move onto a big data 
platform. In general, the first transformations in a workflow are aimed at reducing the data space 
dimensionality mainly through aggregation, conversion, filtering, sorting, etc…. Those are the most 
computationally intensive transformations, possibly dealing with a very high number of data rows. 
These operations, when happening on very large data sets, are worth a thought about parallelization 
to speed up execution. On the opposite, subsequent operations, like Data Mining, Machine Learning, 

 
Figure 33: A high level overview of a big data workflow architecture 
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and Statistical algorithms, usually deal with already processed data, i.e. with a reduced size data set. 
For these operations, usually and so far, a big data approach has not been necessary. 

Our three sets of workflows are no exception. The first workflow “PrepareData” has a high 
computational load, requiring a few days to execute on a 4-core with 8GB RAM laptop. The following 
workflow, named “k-Means”, requires just a few hours and the execution time is concentrated 
mainly on the aggregating operations to create the prototype cluster time series. Finally, the last 
workflow group implementing the time series prediction deals with such a reduced data set to take 
only a few minutes to execute. Based on these considerations, we remodeled the first workflow, the 
one named “PrepareData”, using the DataRush extension’s nodes, i.e. effectively moving portions of 
the original workflow onto Hadoop. We renamed the new workflow “PrepareData – DataRush” (Fig. 
34).  

 

By introducing the DataRush nodes into the “PrepareData” workflow, the execution time for data 
extraction and particularly for data transformation got reduced by a factor of 30.      

By introducing the DataRush nodes in other portions of the subsequent workflows, speed 
improvements were not as great, as the previous processing already reduced the data down to a 
much smaller size for the clustering and time series prediction workflows. For our work, the need for 
a “big data” processing option can be summarized as follows:  

Accessing Data:   Reading even very large amounts of data does not seem to be prohibitive 
even on a KNIME Desktop.  

Manipulating Data:   Here the big data option can be very beneficial when dealing with very large 
quantities of data. 

 
Figure 34: Workflow “PrepareData – DataRush” implemented following the workflow “PrepareData” in figure 
11 and moving some nodes onto the DataRush big data platform. 
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Data Visualization: For simply visualizing data, big data options are not needed.  After all, you 
can only visualize so many data points on a screen anyway. 

Predictive Mining: This is case dependent.  In our case, big data was not necessary, since 
clustering and the previous data manipulation steps reduced the data so 
significantly (ie: one time series per cluster) before running the time series 
prediction. 

Execution: When using the models for prediction, for a batch execution against even 
larger quantities of data or, if required, for a real time execution, the big data 
option could be very useful. 

However, the most important feature of this approach is that, with the right platform such as KNIME 
combined with Actian DataRush, you can mix and match your techniques within the workflow to 
achieve both the optimal point in flexibility, processing, speed, and investment based on your 
requirements.  

Conclusions  

Data Science Conclusions and next Steps 

In this project we implemented a first attempt to time series forecasting using KNIME. This first step 
basically consisted of an autoregressive model with seasonality correction. The key to the 
implementation a time series forecasting workflow was given by the new “Lag Column” node, 
distributed with the latest version 2.8 of KNIME. This node indeed allows for the shifting of a selected 
data column, effectively building data rows with past and future of the time series with respect to a 
given time t. After this data transformation, the application of any numerical data mining algorithm 
implements a time series forecasting task. 

The complete implementation of an arima model still requires a moving average. The next step in the 
project would then be the introduction of a moving average into the timeseries forecasting workflow, 
in order to implement an arima(p,d,q) model. The implementation of a node for the automatic 
detection of the optimal arima orders p, d, and q would also be useful. 

Moving away from the arima model, in future developments of this project we could experiment 
with different time series forecasting techniques. We started here by using a neural network with 
satisfactory results. However, using the same framework, we could apply any other numerical data 
mining or statistical technique.  

As we know, results can be improved by using different more specialized techniques as well as 
limiting the investigation area. For example, we could implement a stepwise prediction technique or 
we could categorize, and therefore simplify, the target, which suddenly makes a much bigger range 
of data analysis algorithms available. 

From a more engineering point of view, it would be useful for the whole community to build a time 
series meta-node. This meta-node could then provide a pre-packaged menu of options for time 
series forecasting. This metanode would also include a sub-metanode for the calculation of the mean 
square error between the predicted time series and the original time series.  

Finally, we should compare the results of this approach of predicting each cluster time series to the 
current global forecasting methods. This is to determine whether a lower resolution approach leads 
to a higher degree of accuracy in forecasting. 
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Business next Steps 

From the business side, combining clustering and forecasting techniques has surfaced new fact-based 
insight that has allowed us to further tailor the offerings while controlling the costs.  

For the future, it would be useful to continue investigating each cluster more in detail, combining the 
clusters with the original survey data, which will provide more demographics and fact based 
information about each cluster.  One could then determin which clusters are suitable for pro-active 
pricing approaches and which clusters can receive an offer when in combination with others. 

Probably the most exciting area for further investigation is the definition of a very few “golden 
questions” in pre-purchase questionaires and online forms to pre-identify the cluster of energy usage 
for each new meter ID. In this way, a more accurate tailored pricing plan can not only be offered to 
existing customers but can be used to entice new customers where their energy usage profilie is not 
known. 

These techniques have wide implications for all other industries that have massive quantities of time-
based or telemetry data.  The costs of storage are now low, the expertise is available in white papers 
such as this, and - most importantly - open source options such as KNIME can bring the data together 
with the tools and the science to benefit the business. 

Note. This white paper along with a sample of all workflows is available for download from 
http://www.knime.com/white-papers. The KNIME Desktop open source software can be 
downloaded from www.knime.com.  

http://www.knime.com/white-papers
http://www.knime.com/

