

Strategies for Building Predictive Models

Dean Abbott Abbott Analytics, Inc. KNIME User Group Meeting February 14, 2014

Email: <u>dean@abbottanalytics.com</u> Blog: <u>http://abbottanalytics.blogspot.com</u> Twitter: @deanabb

© Abbott Analytics, Inc. 2001-2013

abbott analytics

Instructor - Dean Abbott

• Education

- Master of Applied Mathematics, University of Virginia
- B.S. Computational Mathematics, Rensselaer Polytechnic Institute
- Applied Data Mining for 25+ years in
 - Tax Compliance, Fraud Detection
 - Text Mining and Concept Classification
 - Direct Marketing, CRM, Survey Analysis, Market Basket Analysis
 - Predictive Toxicology, Biological Risk Assessment
 - Earlier
 - Signal and Image Processing, Guidance and Control
 - Optical Character Recognition & Postnet Bar Code Readers
- Data Mining Course Instruction
 - Taught dozens of short courses, conference tutorials, lectures, in-house custom courses

2

What is Predictive Analytics?

Wikipedia Definitions

- Predictive analytics is an area of statistical analysis that deals with extracting information from data and uses it to predict future trends and behavior patterns.
- The core of predictive analytics relies on capturing relationships between explanatory variables and the predicted variables from past occurrences, and exploiting it to predict future outcomes.

What is Predictive Analytics?

- Other Definitions (in the news and blogs)
 - Predictive Analytics is emerging as a game-changer. Instead of looking backward to analyze "what happened?" predictive analytics help executives answer "What's next?" and "What should we do about it?" (Forbes Magazine, April 1, 2010)
 - Predictive analytics is the branch of data mining concerned with the prediction of future probabilities and trends. (searchcrm.com)
 - Predictive Analytics *is* data mining re-badged because too many people were claiming to do data mining and weren't. (Tim Manns paraphrasing Wayne Erickson of TDWI)

What is Predictive Analytics? Simple Definitions

- Data driven analysis for [large] data sets
 - Data-driven to discover input combinations
 - Data-driven to validate models
- Automated pattern discovery
 - Key input variables
 - Key input combinations

atana	Statistics vs. Predictive Analytics							
		Statistics	Predictive Analytics					
	View of the "other" field	"data dredging"	"we can do <i>that</i> and more!"					
	Emphasis	Theory; Optimum Solutions	"Good" Heuristics					
	Approach	Parametric	Non-parametric					
	Key Metrics of Performance	R ² , p-values, S.E.	Lift, ROC					
	What is King?	Model	Data					
	See David J. Hand, "Statistics and Data Mining: Intersecting Disciplines", SIGKDD Explorations, Vol. 1, No. 1, June 1999, pp. 16-19. 8 © Abbott Analytics, Inc. 2001-2011							

Business Intelligence vs. Predictive Analytics

Business Intelligence Predictive Analytics

View of the "other" field	"we're the foundation, (they're so complicated!)"	"they report the past, we predict the future!"
Emphasis	What happened?	What do we think <i>will</i> happen?
Approach	User-driven Reporting	Algorithms, Searching
Key Metrics of Performance	KPIs	Lift, ROC
What is King?	Data (via Analyst)	Data (via Algorithms)
	9	© Abbott Analytics, Inc. 2001–2011

Rexer Analytics Survey (2013): Predictive Analytics Algorithms

(0%	2	0%	40	0%	60	%	80%	6	100%
Regression		31%			3	8%		15%	6%	
Decision trees		22%		34	%		18%	9%		
Cluster analysis	15	%		35%			26%	11	%	
Time series	139	%	22%		22%		18%			
Text mining	9%	16%	ó. 📃	20%		19%				
Ensemble models	9%	14%		18%	17	%				
Factor analysis	8%	17%		22%		19%				
Neural nets	8%	15%		23%		19%				
Random forests	8%	13%	1	6%	16%					
Association rules	6%	16%		24%		17%				
Bayesian	6%	15%		23%		19%				
Support vector machines (SVM)	6%	14%		8%	17%	1				
Anomaly detection	6%	14%		20%	169	6				
Proprietary algorithms	6%	10%	15%	159	%		-			
Rule induction	4% 1	0%	18%	1	8%				100	gorithms used varies by the
Social network analysis	4% 1	0%	14%	18%	6		labe	ls peop	ole use	to describe themselves, with
Uplift modeling	4% 1	0%	13%	16%			Data	Mine	rs (14)	and Data Scientists (14)
Survival analysis	89	6 14	%	20%						
Link analysis	8%	13%	12	16%				-		nd Software Developers (9)
Genetic algorithms	7%	14%		19%			and	Progra	mmer	s (8) the fewest.
MARS	4%	9%	15%							10. 24

What do Predictive Modelers do? The CRISP-DM Process Model

- CRoss-Industry Standard Process Model for Data Mining
- Describes Components of Complete Data Mining Cycle from the Project Manager's Perspective
- Shows Iterative Nature of Data Mining

CRISP-DM Step 2: Data Understanding Steps

• Collect initial data

- Internal data: historical customer behavior, results from previous experiments
- External data: demographics & census, other studies and government research
- Extract superset of data (rows and columns) to be used in modeling
- Identify form of data repository: multiple vs. single table, flat file vs. database, local copy vs. data mart
- Perform Preliminary Analysis
 - Characterize Data (describe, explore, verify)
 - Condition Data

14

A abbott analytics

CRISP-DM vs. SEMMA

SFMMA

Five Steps

CRISP-DM Six Steps

Table 2.3. Comparison of methods

CRISP	SEMMA	Nayak & Qiu
Business understanding	Assumes well-	Goals were defined
	defined question	Develop tools to better utilize problem reports
Data understanding	Sample Explore	Looked at data in problem reports
Data preparation	Modify data	Data pre-processing
S. 15.		Data cleaning
		Data transformation
Modeling	Model	Data modeling
Evaluation	Assess	Analyzing results
Deployment		

Table from Advanced Data Mining Techniques, Olsen and Delen, Springer, 2008

© Abbott Analytics, Inc. 2001-2011

1

a Strategy 3: abbott analytics Assess Models the Way you Use Them Standard Assessment Methods **Batch Methods** Rank-Ordered Methods • Why the Method Matters Outliers Sampling and Accuracy

Classification Accuracy from Decision Thresholds

- If P(Target_B = 1) is greater than a pre-defined threshold, the prediction is Target_B = 1.
- If the prediction matches the actual Target_B value, the decision is "correct". Otherwise it is wrong
- With the threshold of 0.05,
 - first 17 records are above the threshold
 - 9 records have "correct" predictions
 - 8 records have "incorrect" predictions

P(Target_B = 1)	CONTROLN	LastGift	TARGET_B	P(Target_B = 0)
0.0731	185436	0	0	0.9269
0.0715	14279	1	1	0.9285
0.0699	727	2	1	0.9301
0.0683	24610	3	1	0.9317
0.0668	22645	4	1	0.9332
0.0653	82943	5	1	0.9347
0.0639	108412	6	0	0.9361
0.0624	190313	7	1	0.9376
0.0611	48804	8	0	0.9389
0.0597	123822	9	1	0.9403
0.0583	94039	10	0	0.9417
0.0570	47605	11	0	0.9430
0.0558	25641	12	1	0.9442
0.0545	47476	13	0	0.9455
0.0533	6023	14	0	0.9467
0.0521	47784	15	0	0.9479
0.0509	148569	16	1	0.9491
0.0497	171099	17	0	0.9503

If $(P(Target_B = 1) > 0.05)$ Then 1 Else 0

Typical Binary Classification Accuracy Metrics

		Predicte		
Confus	ion Matrix 0 (predicted value is negative)		1 (predicted value is positive)	Total Actual (down)
Actual Class	0 (actual value is negative)	t _n (true negative)	f n (false negative, false dismissal)	Total actual negatives tn + fn
	1 (actual value is positive)	f _p (false positive, false alarm)	t _p (true positive)	Total actual positives tp + fp
	Total Predicted (across)	Total negative predictions tn + fp	Total positive predictions tp + fn	Total Examples tp + tn + fp + fn

AO

abbott

 $PCC = \frac{t_p + t_n}{t_p + t_n + f_p + f_n}$ $Precision = \frac{t_p}{t_p + f_p}$ $Recall = \frac{t_p}{t_p + f_p}$ False Alarm Rate (FA) = $\frac{f_p}{t_p + f_p}$ False Dismissal Rate (FD) = $1 - Recall = \frac{f_n}{t_n + f_n}$ Sensitivity = Recall = $\frac{t_p}{t_p + f_p}$ Specificity = True Negative Rate = $\frac{t_n}{t_n + f_n}$ $Type \ I \ Error = \frac{f_p}{t_n + t_n + f_n + f_n}$ Type II Error = $\frac{f_n}{t_n + t_n + f_n + f_n}$

A abbott analytics

Batch vs. Rank-Ordered Approaches to Model Evaluation

- "Batch" approaches
 - Score every record with the same weight
 - Provide a summary for the entire scored data set
 - PCC, Precision, Recall, Type I Errors, Type II Errors, etc.
- Rank-ordered approaches
 - Sort population by model scores, high to low
 - Accumulate a metric as one goes down the ordered file
 - Reports results by group, typically deciles, demi-deciles, percentiles, etc.
 - Examples
 - Lift, Gains, ROC, Profit

Measure What is Measures Gain % of target records found	A abbott analytics	Three Key Rank-Ordered Metrics	
Gain % of target records found		Measure What is Measures	
Lift ratio of target gain to average response rate			
change classifier probability threshold from 0 to ROC sensitivity vs. 1 - specificity for each threshold			1;

- Number Respondants are Rank-ordered (sorted) by predicted values
- X axis is the percentage of records as go down file.
- Gain is the pct. of target=1 found at indicated file depth
- Lift ratio is how many times more respondants at given customer depth compared to random selection
- Random gain has slope equal to proportion of respondants in training data
- Random lift is 1.0

Profit / ROI Charts

26

Profit

- \rightarrow = Revenue Cost
- > Cumulative Measure
- Increases as long as ROI > 0 in segments
- → Negative => campaign loses money
- ROI Percentage
 - \rightarrow = Profit / Cost
 - → or (Revenue / Cost) -1
 - → Cumulative Measure
 - Negative => campaign loses money

The Conflict with Predictive Modeling Algorithm Objectives

Algorithm Objectives

- Linear Regression and Neural networks minimize squared error
- C5 maximizes Information Gain
- CART maximizes Gini index
- Logistic regression maximizes the log of the odds of the probability the record belongs to class "1" (classification accuracy)
- Nearest neighbor minimizes Euclidean distance

Sample Business Objectives

- Maximize net revenue
- Contact max # customers to achieve response rate of 13%
- Maximize responders subject to a budget of \$100,000
- Maximize recovered revenue from customers likely to churn
- Maximize collected revenue by identifying next best case to collect
- Minimize false alarms in 100 transactions most likely to be fraudulent

A abbott analytics

PAKDD Cup 2007 Results: Score Metric Changes Winner

• Correlation of AUC rank with top Decile Rank: 0.76

	Modeling	Participant	Participant	AUCROC (Trapezoi	AUCROC (Trapezoidal	Top Decile	Top Decile Response	
Modeling Technique ->		Affiliation Location			Rule) Rank	Response Rat	Rate Rank	
TreeNet + Logistic Regression	Salford Systems	Mainland China	Practitioner	70.01%	1	13.00%	7	
Probit Regression	SAS	USA	Practitioner	69.99%	2	13.13%	6	
MLP + n-Tuple Classifier	373	Brazil	Practitioner	69.62%	3	13.88%	1	
TreeNet	Salford Systems	USA	Practitioner	69.61%	4	13.25%	4	
TreeNet	Salford Systems	Mainland China	Practitioner	69.42%	5	13.50%	2	
Ridge Regression	Rank	Belgium	Practitioner	69.28%	6	12.88%	9	
2-Layer Linear Regression		USA	Practitioner	69.14%	7	12.88%	9	
Log Regr+ Decision Stump + AdaBoost + VFI		Mainland China	Academia	69.10%	8	13.25%	4	
Logistic Average of Single Decision Functions		Australia	Practitioner	68.85%	9	12.13%	17	
Logistic Regression	Weka	Singapore	Academia	68.69%	10	12.38%	16	
Logistic Regression		Mainland China	Practitioner	68.58%	11	12.88%	9	
Decision Tree + Neural Network + Logistic								
Regression		Singapore		68.54%	12	13.00%	7	
Scorecard Linear Additive Model	Xeno	USA	Practitioner	68.28%	13	11.75%	20	
Random Forest	Weka	USA		68.04%	14	12.50%	14	
Expanding Regression Tree + RankBoost + Bagging	Weka	Mainland China	Academia	68.02%	15	12.50%	14	
Logistic Regression	SAS + Salford	India	Practitioner	67.58%	16	12.00%	19	
J48 + BayesNet	Weka	Mainland China	Academia	67.56%	17	11.63%	21	
Neural Network + General Additive Model	Tiberius	USA	Practitioner	67.54%	18	11.63%	21	
Decision Tree + Neural Network		Mainland China	Academia	67.50%	19	12.88%	9	
Decision Tree + Neural Network + Log. Regression	SAS	USA	Academia	66.71%	20	13.50%	2	
http://lamda.nju.edu.cn/conf/pakdd07/dmc07/results.htm								

29

© Abbott Analytics, Inc. 2001-2013

A abbott analytics

Model Comparison: Different Metrics Tell Different Stories

Model Number	Model ID	AUC	Train RMS	Test RMS	AUC Rank	Train RMS Rank	Test RMS Rank
50	NeuralNet1032	73.3%	0.459	0.370	9	53	1
39	NeuralNet303	72.4%	0.477	0.374	42	59	2
36	NeuralNet284	75.0%	0.458	0.376	2	52	3
31	NeuralNet244	72.7%	0.454	0.386	33	49	4
57	CVLinReg2087	70.4%	0.397	0.393	52	5	5
34	NeuralNet277	72.7%	0.455	0.399	28	50	6
37	NeuralNet297	72.4%	0.449	0.399	43	38	7
56	CV_CART2079	68.0%	0.391	0.401	54	4	8
54	CVNeuralNet2073	67.9%	0.403	0.401	55	6	9
59	CVNeuralNet2097	66.0%	0.403	0.401	59	7	10
61	CV_CART2104	70.4%	0.386	0.402	53	3	11
42	NeuralNet334	72.4%	0.450	0.404	40	44	12
52	CVLinReg2063	67.5%	0.404	0.404	57	8	13
41	NeuralNet330	72.4%	0.443	0.406	41	16	14
38	NeuralNet300	72.4%	0.451	0.408	38	45	15
55	CV_CHAID2078	64.6%	0.380	0.411	60	2	16
45	NeuralNet852	74.2%	0.456	0.413	3	51	17
53	CVLogit2068	67.5%	0.414	0.414	58	10	18
60	CV_CHAID2102	61.5%	0.380	0.414	61	1	19
58	CVLogit2092	67.7%	0.413	0.414	56	9	20

• Top RMS model is 9th in AUC, 2nd Test RMS rank is 42nd in AUC

30

• Correlation between rankings:

	AUC Rank	Train RMS Rank	Test RMS Rank			
AUC Rank	1					
Train RMS Rank	(0.465)	1				
Test RMS Rank	(0.301)	0.267	1			
			0001 0010			
	© Abbott Analytics, Inc. 2001-2013					

KDDCup 98 Data: Top 200 Models Built Using Stepwise Variable Selection

- Error Metrics
 - Root-Mean-Squared (RMS) Error on Test data
 - Area Under the Curve (AUC) at the 70% Depth

How Sampling Effects Accuracy Measures

- For example, 95% non-responders (N), 5% responders (R)
- What's the Problem? (The justification for resampling)
 - "Sample is biased toward responders"
 - "Models will learn non-responders better"
 - "Most algorithms will generate models that say 'call everything a non-responder' and get 93% correct classification!" (I used to say this too)
- Most common solution:
 - Stratify the sample to get 50%/50% (some will argue that one only needs 20-30% responders)

Confusion Matrices For the Decision Tree: Before and After

0

abbott analytics

Decision Tree:	Response_				 Distributions Prob(RESPONSE_STR==R)
Threshold at 0.5	STR	Ν	R	Total	
	N	5,002	0	5,002	
	R	386	0	386	
	Total	5,388	0	5,388	
Decision Tree: Threshold at 0.071	Response_				 ▶ Quantiles
	STR	Ν	R	Total	Summary Statistics Mean 0.0715519 Subscription
	Ν	2,798	2,204	5,002	Std Dev 0.0747384 Std Err Mean 0.0010182 Upper 95% Mean 0.0735479
	R	45	341	386	Lower 95% Mean 0.0695558 N 5388
	Total	2,843	2,545	5,388	

34

© Abbott Analytics, Inc. 2001-2013

The Winner is... Best Accuracy

NETFLIX

Netflix Prize

0

abbott analytics

http://www.netflixprize.com/leaderboard

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time						
Grand	Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos									
1	BellKor's Pragmatic Chaos	0.8567	10 <mark>.</mark> 06	2009-07-26 18:18:28						
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22						
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40						
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31						
5	Vandelay Industries !	0.8591	9.8 <mark>1</mark>	2009-07-10 00:32:20						
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56						
7	BellKor in BigChaos	0.860 <mark>1</mark>	9.7 <mark>0</mark>	2009-05-13 08:14:09						
8	Dace_	0.8612	9.59	2009-07-24 17:18:43						
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51						
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59						

© Abbott Analytics, Inc. 2001-2013

Why Model Accuracy is Not Enough: Netflix Prize

NETFLIX

http://techblog.netflix.com/2012/04/ netflix-recommendations-beyond-5-stars.html

A year into the competition, the Korbell team won the first Progress Prize with an 8.43% improvement. They reported more than 2000 hours of work in order to come up with the final combination of 107 algorithms that gave them this prize. And, they gave us the source code. We looked at the two underlying algorithms with the best performance in the ensemble: *Matrix Factorization* (which the community generally called SVD, *Singular Value Decomposition*) and *Restricted Boltzmann Machines* (RBM). SVD by itself provided a 0.8914 RMSE, while RBM alone provided a competitive but slightly worse 0.8990 RMSE. A linear blend of these two reduced the error to 0.88. To put these algorithms to use, we had to work to overcome some limitations, for instance that they were built to handle 100 million ratings, instead of the more than 5 billion that we have, and that they were not built to adapt as members added more ratings. But once we overcame those challenges, we put the two

If you followed the Prize competition, you might be wondering what happened with the final Grand Prize ensemble that won the \$1M two years later. This is a truly impressive compilation and culmination of years of work, blending hundreds of predictive models to finally cross the finish line. We evaluated some of the new methods offline but the additional accuracy gains that we measured did not seem to justify the engineering effort needed to bring them into a production environment. Also, our focus on improving Netflix personalization had shifted to the next level by then. In the remainder of this post we will explain how and why it has shifted.

Why Data Science is Not Enough: Netflix Prize

http://techblog.netflix.com/2012/04/ netflix-recommendations-beyond-5-stars.html

Now it is clear that the Netflix Prize objective, accurate prediction of a movie's rating, is just one of the many components of an effective recommendation system that optimizes our members enjoyment. We also need to take into account factors such as context, title popularity, interest, evidence, novelty, diversity, and freshness. Supporting all the different contexts in which we want to make recommendations requires a range of algorithms that are tuned to the needs of those contexts. In the next part of this post, we will talk in more detail about the ranking problem. We will also dive into the data and models that make all the above possible and discuss our approach to innovating in this space.

There's more to a solution than accuracy—you have to be able to use it!

A abbott analytics

Clean Data: Outliers

- Are the outliers problems?
 - Some algorithms: "yes"
 - Linear regression, nearest neighbor, nearest mean, principal component analysis
 - In other words, algorithms that need mean values and standard deviations
 - Some algorithms: "no"
 - Decision trees, neural networks

- If outliers are problems for the algorithm
 - Are they key data points?
 - *Do not* remove these
 - Consider "taming" outliers with transformations (features)
 - Are they anomalies or otherwise uninteresting to the analysis
 - Remove from data so that they don't bias models

outliers

Clean Data: Missing Values

- Missing data can appear as
 - blank, NULL, NA, or a code such as 0, 99, 999, or -1.
- Fixing Missing Data:
 - Delete the record (row), or delete the field (column)
 - Replace missing value with mean, median, or distribution
 - Replace with the missing value with an estimate
 - Select value from another field having high correlation with variable containing missing values
 - Build a model with variable containing missing values as output, and other variables without missing values as an input
- Other considerations
 - Create new binary variable (1/0) indicating missing values
 - Know what algorithms and software do by default with missing values
 - Some do listwise deletion, some recode with "0", some recode with midpoints or means

Missing Data: Imputation with Mean vs. Distribution

0

abbott

payments	original data (no missing)	Cumulative with 10% missing	Cumulative with 10% missing, recoded	Cumulative with 10% missing, recoded	Cumulative with 30% missing	Cumulative with 30% missing, recoded	Cumulative with 30% missing, recoded
500	500	500	500	500	500	500	500
2,019	2,519	2,519	2,519	2,519	2,519	2,519	2,519
7,528	10,047	10,047	10,047	10,047	10,047	10,047	10,047
7,954	18,001	18,001	18,001	18,001	18,001	18,001	18,001
8,438	26,439	26,439	26,439	26,439		80,737	5,200
8,917	35,356	35,356	35,356	35,356	35,356	35,356	35,356
9,471	44,827		88,334	170,000		80,737	170,000
9,912	54,739	54,739	54,739	54,739	54,739	54,739	54,739
10,373	65,112	65,112	65,112	65,112	65,112	65,112	65,112
10,930	76,042	76,042	76,042	76,042	76,042	76,042	76,042
11,392	87,434	87,434	87,434	87,434	87,434	87,434	87,434
11,855	99,289	99,289	99,289	99,289		80,737	160,000
12,357	111,646	111,646	111,646	111,646	111,646	111,646	111,646
12,862	124,508	124,508	124,508	124,508	124,508	124,508	124,508
13,340	137,848	137,848	137,848	137,848		80,737	22,222
13,856	151,704	151,704	151,704	151,704	151,704	151,704	151,704
14,252	165,956	100000000000	88,334	37,000	400 A 16 20 10 20	80,737	37,000
14,813	180,769	180,769	180,769	180,769	180,769	180,769	180,769
15,351	196,120	196,120	196,120	196,120		80,737	125,000
15,817	211,937	211,937	211,937	211,937	211,937	211,937	211,937
Mean	90,040	88,334	88,334	89,851	80,737	80,737	82,487
Std. Dev.	67,415	67,949	64,274	67,959	67,745	56,037	67,611
Median	81,738	81,738	87,884	81,738	70,577	80,737	70,577
Min	500	500	500	500	500	500	500
Мах	211,937	211,937	211,937	211,937	211,937	211,937	211,937
			MAINTAIN MEAN	MAINTAIN STDEV		MAINTAIN MEAN	MAINTAIN STDEV
				about mean			about mean

44

- How much can missing data effect models?
- Example at upper right has 5300+ records, 17 missing values encoded as "0"
- After fixing model with mean imputation, R² rises from 0.597 to 0.657
- Why? Missing was recoded with "0" in this example, which was a particularly bad imputation for this data

Transforms:

Changing Distribution of Data

Positive Skew

abbott analytics

- Tail of distribution to right
- Correction: log transform
- Example: MAX_DON_AMT

- Negative Skew
 - Tail of distribution to left
 - Correction: Power >= 2, Exp
 - Example: HOMEVAL50

Why Skew Matters (In Regression Modeling)

• Obscures information in plot

abbott

- Spaced in scatterplot taken up by empty space in upper (or lower) end of skewed values
- Regression models fit worse with skewed data
 - In example at right, by simply applying the log transform, performance is improved from R^2=0.566 to 0.597

Transforms: Scaling Data

- Before normalization, income scale "dwarfs" age
- z-score
 - $x^* = (x mean) / std$
 - Income and age on same scale
- Scale to range [0,1]
 x* = (x x_{min}) / (x_{max} x_{min})
- Both allow one to see both variables on same scale
- Can apply this to subsamples of data (regional data, for example)

IL

IN

Grouping and Exploding Categorical Data

Group: State to Region

Midwest

Midwest

Explode: Region "dummy" variables

State	Group	Region	Mid-Atlantic	Midwest	Mountain	Northeast	Northwest	Southeast
AK	Northwest	Northwest	0	0	0	0	1	0
		Southeast	0	0	0	0	0	1
AL	Southeast	Southeast	0	0	0	0	0	1
AR	Southeast	Southwest	0	0	0	0	0	0
CA	Southwest	Mountain	0	0	1	0	0	0
СО	Mountain	Northeast	0	0	0	1	0	0
		Mid-Atlantic	1	0	0	0	0	0
CT	Northeast	Mid-Atlantic	1	0	0	0	0	0
DC	Mid-Atlantic	Southeast	0	0	0	0	0	1
DE	Mid-Atlantic	Southeast	0	0	0	0	0	1
FL	Southeast	Southwest	0	0	0	0	0	0
		Midwest	0	1	0	0	0	0
GA	Southeast	Northwest	0	0	0	0	1	0
HI	Southwest	Midwest	0	1	0	0	0	0
IA	Midwest	Midwest	0	1	0	0	0	0
ID	Northwest							

• Categorical data having values with small populations (10s of cases) is *very* problematic in modeling. They should be binned up (grouped) as much as is possible!

49

Effect of High Cardinality

- Cardinality: number of levels in a variable
 - We care about cardinality in categorical variables
 - *#* levels -> frequency counts
- Why do we care?
 - Decision trees are biased toward accepting splits with variables having high cardinality
 - Numeric algorithm implementations that automatically create dummy variables for categoricals may create *lots* of new 1/0 dummies
 - Higher # inputs in models
 - Lots of low information content variables

Different Approaches to Deployment

Data Prep	Model	Type of Application		
	In Database	real-time scoring		
la Databasa	In PA Software	weekly/monthly scoring		
In Database	Standalone	real-time scoring		
	In Cloud	large, real-time scoring		
	In Database	large, real-time scoring		
	In PA Software	ad hoc scoring		
in PA Software	Standalone	complex prep; occasional scoring		
	In Cloud	big data; complex prep; occasional scoring		
	In Database	big data; complex prep; occasional scoring		
	In PA Software	unlikely		
In Cloud	Standalone	big data; complex prep; occasional scoring		
	In Cloud	large, real-time scoring; computationally intensive prep		

56

© Abbott Analytics, Inc. 2001-2013

Form of Models for Deployment: In-PA Software Deployment

- Run models through original software in ad hoc or automated process
- Benefits:
 - Data prep done in software still there
 - But still may have to trim down processing for efficiency
 - no further work to be done to deploy
- Drawbacks
 - Usually slower
 - have to pull data out and push it back to database
 - Software not usually optimized for speed; optimized for usability
 - Requires a software expert to maintain and troubleshoot
 - Analyst usually involved
 - Errors not always handled gracefully

Form of Models for Deployment: External Call to PA Software

- Run models through original software in ad hoc or automated process, but as a call from the OS
- Benefits:
 - Data prep done in software still there
 - But still may have to trim down processing for efficiency
 - no further work to be done to deploy
- Drawbacks
 - Usually slower
 - have to pull data out and push it back to database
 - Software not usually optimized for speed; optimized for usability
 - Requires a software expert to maintain and troubleshoot
 - Analyst usually involved
 - Errors not always handled gracefully

Form of Models for Deployment: Translation to Another Language

- Translate models into SQL, C (++, #, etc.), Java, PMML
 - If in C/Java, can create standalone application just for the model scoring
- Benefits
 - Get models out of software environment where they can be run and maintained by others
 - Often run more efficiently in database or other environment
 - Many tools provide export capabilities into other languages
- Drawbacks
 - Translation of dataprep not usually included in tool export, requires significant time and QC/QA to ensure consistency with the tool
 - Bug fixes take longer

Form of Models for Deployment: PMML

- Translate models into PMML
 - Different than SQL, C, Java, etc.
- Benefits
 - PMML supports (natively) entire predictive modeling process
 - Language is simple
 - Database support
 - Online support for scalable scoring (Zementis)
- Drawbacks
 - Translation of dataprep not usually included in predictive modeling software tools, requires coding
 - Models are verbose
 - Open source scoring options are limited

Resources

Dean Abbott Abbott Analytics, Inc. Predictive Analytics World, Berlin (#pawcon) November 6, 2013

Email: <u>dean@abbottanalytics.com</u> Blog: <u>http://abbottanalytics.blogspot.com</u> Twitter: @deanabb

62

© Abbott Analytics, Inc. 2001-2013

Data Preparation

From Amazon.com

- Data Preparation for Data Mining
- by Dorian Pyle
- Paperback 540 pages Bk&Cd Rom edition (March 15, 1999)
- Morgan Kaufmann Publishers;
- ISBN: 1558605290 ;

Excellent resource for the part of data mining that takes the most time. Best book on the market for data preparation.

abbott analytics

Data Mining Methods

From Amazon.com

- Handbook of Statistical Analysis and Data Mining Applications by Robert Nisbet, John Elder, Gary Miner
- Hardcover: 900 pages
- Publisher: Academic Press (April 23, 2009)
- Language: English
- ISBN-10: 0123747651
- ISBN-13: 978-0123747655

New data mining book written for practitioners, with case studies and specifics of how problems were worked in Enterprise Miner, Clementine, STATISTICA, or another tool

© Abbott Analytics, Inc. 2001-2013

66

Applied Predictive Analytics

67

Learn the art and science of predictive analytics — techniques that get results

Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included.

IBM Modeler Recipes

Go beyond mere insight and build models than you can deploy in the day to day running of your business Save time and effort while getting more value from your data than ever before Loaded with detailed step-by-step examples that show you exactly how it's done by the best in the business

Book Details Language : English Paperback : 386 pages [235mm x 191mm] Release Date : November 2013 ISBN : 1849685460 ISBN 13 : 9781849685467 Author(s) : Keith McCormick, Dean Abbott, Meta S. Brown, Tom Khabaza, Scott Mutchler Topics and Technologies : All Books, Cookbooks, Enterprise

IBM SPSS Modeler Cookbook

Over 60 practical recipes to achieve better results using the experts' methods for data mining

Foreword by Colin Shearer, Creator of Clementine/Modeler

Keith McCormick Dean Abbott Meta S. Brown Tom Khabaza Scott R. Mutchler enterprise 8

68

A abbott analytics

Data Mining Algorithms

From Amazon.com

- Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations
- By Eibe Frank, Ian H. Witten
- Paperback 416 pages (October 13, 1999)
- Morgan Kaufmann Publishers;
- ISBN: 1558605525;
- Best book I've found in between highly technical and introductory books. Good coverage of topics, especially trees and rules, but no neural networks.

A abbott analytics

Data Mining Algorithms

From Amazon.com

- Neural Networks for Pattern Recognition by Christopher M. Bishop
- Paperback (November 1995)
- Oxford Univ Press;
- ISBN: 0198538642

Excellent book for neural network algorithms, including some lesser known varieties.

Described as "Best of the best" by Warren Sarle (Neural Network FAQ)

Data Mining Algorithms

From Amazon.com

- Pattern Recognition and Neural Networks
- by Brian D. Ripley,
- N. L. Hjort (Contributor)
- Hardcover (October 1995)
- Cambridge Univ Pr (Short);
- ISBN: 0521460867

Ripley is a statistician who has embraced data mining. This book is not just about neural networks, but covers all the major data mining algorithms in a very technical and complete manner.

Sarle calls this the best advanced book on Neural Networks

From Amazon.com

The Elements of Statistical Learning

by Trevor Hastie, Rob Tibsharani Jerome Friedman

Hardcover (2001) Springer; ISBN: 0-387-95284-5

By 3 giants of the data mining community, I have read most of the book and can't think of a significant conclusion I disagree with them on. Very technical, but very complete. Topics covered in this book not usually covered in others such as kernel methods, support vector machines, principal curves, and many more. Has become my favorite technical DM book.

Book has 200 color figures/charts—first data mining book I' ve seen that makes use of color, and this book does it right

http://www-stat.stanford.edu/~tibs/ ElemStatLearn/download.html

Accessible Technical Description of Algorithms

analytics

Machine Learning, Neural and Statistical Classification

D. Michie, D.J. Spiegelhalter, C.C. Taylor (eds)

Available free online (PDF)

http://www.amsta.leeds.ac.uk/~charles/statlog/

From Amazon.com Classification and Regression Trees by Leo Breiman Paperback (December 1983) CRC Press; ISBN: 0412048418 The definitive textbook on decision trees from the inventors of the CART algorithm.

Popular Data Mining Books

FREAKONOMICS A ROGUE ECONOMIST EXPLORES THE HIDDEN SIDE OF EVERYTHING

"Prepare to be dazzled." — Malcolm Gladwell, author of The Tipping Point and Blink

A NEW YORK TIMES BUSINESS BESTSELLER "As entertaining and thought provoking as The Tipping Point by Malcolm Gladwell, . . . The Window of Crowds ranges far and wide." —The Boston Globe

THE WISDOM OF CROWDS

JAMES SUROWIECKI

A NEW AFTERWORD BY THE AUTHO.

"Groundbreaking... Not only is it fun to read, it just may change the way you think." —STEVEN D. LEVITT, coauthor of *Freakonomics*

WHY THINKING-BY-NUMBERS

SUPER SUPER CRUNCHERS

© Abbott Analytics, Inc. 2001-2013

73

Biographies

With contributions from:

Dean Abbott, @deanabb Charu Aggarwal Michael Berthold Chris Clifton John Elder IV David J. Hand Cheryl G. Howard J. Dustin Hux Hillol Kargupta Colleen McLaughlin McCue G. J. McLachlan Gregory Piatetsky-Shapiro, @kdnuggets Shusaku Tsumoto Graham J. Williams Mohammed J. Zaki

Publication Date: July 21, 2012 ISBN-10: 3642280463 ISBN-13: 978-3642280467

© Abbott Analytics, Inc. 2001-2013

A abbott analytics

Descriptions of Algorithms

- Neural Network FAQ
- <u>ftp://ftp.sas.com/pub/neural/FAQ.html</u>
- Statistical data mining tutorials by Andrew Moore, Carnegie Mellon
- http://www-2.cs.cmu.edu/~awm/tutorials/
- A list of papers and abstracts from The University of Bonn Data Clustering and Visualization is a category of particular interest. Hasn't been updated since 2003, but still a good selection of papers.
- <u>http://www-dbv.informatik.uni-bonn.de</u>
- A Statistical Learning/Pattern Recognition Glossary by Thomas Minka. Very comprehensive list of data mining terms and glossary-like descriptions
- <u>http://www.stat.cmu.edu/~minka/statlearn/glossary/</u>