KNIME @ HiTIF: Bioimaging Workflows for Looking Inside Cells

Prabhakar <u>Reddy</u> Gudla High-Throughput Imaging Facility (HiTIF)

> KNIME Fall Summit, Austin, TX Nov 1 – 3, 2017

NIH NATIONAL CANCER INSTITUTE

Overview

- High-throughput Imaging (HTI)
- Why KNIME?
- KNIME (KNIP) HTI Applications
 - Transcription dynamics from 2D-t images
 - Deep learning for object detection

HTI Enables Systematic Study of Cell Function

Source: Jan Eglinger, KNIME Summit, Spring 2017

Computational Infrastructure

- Hardware
 - 2 X 16-Core AMD, 256 GB RAM, 1.5 TB SAN, Windows Server 2012
 - HPC Batch Cluster: Intel 28 Core (w/ HT), 256 GB, 4 K80 GPU, 800 GB SSD
 - Batch Limit: 3072 CPUs, 32 GPUs, and 10 days
 - Singularity (Container technology for HPC)
- Storage
 - 72 TB Tier2 Isilon (Perkin Elmer's Columbus/OMERO)
 - 60 TB Tier3 for archiving

KNIME @ HiTIF: Design Philosophy

KNIME @ HiTIF: Data Driven

KNIME @ HITIF

- Segmentation
 - Bright-field cell segmentation
 - Nucleus Segmentation
 - Chromosome Territories
 - FISH Spots/Transcription Sites
- Tracking (2D-t)
 - Live cell imaging
 - Tracking transcription site(s)
- Registration (Affine)
- Phenotype/Outlier Detection

0

10 20 30 40 50 60 70 80

Overview

- High-throughput Imaging (HTI)
- Why KNIME?
- KNIME Applications
 - Transcription dynamics from 2D-t images
 - Deep learning for object detection

Gene-Trap: Transcription Dynamics of Thousands of Genes

KNIME Automated Workflow

Tracking Multiple Transcription Sites

Unregistered Ch0 PP7/MS2+GFP

Registered Ch0

Ch0 with Tracks (Registered)

Images: Diana Stavreva, Hager

Tracking Multiple Transcription Sites

Spot(s) Intensity from Unregistered Images (.n.) 4000 -luorescence Ch0 with Tracks (Registered) Missing Value Frame #, 100 s interval

Modeling Transcription Bursts

Visualizing Transcription and Splicing Dynamics of ERRFI1

Images: Yihan Wan, Larson La

Overview

- High-throughput Imaging (HTI)
- Why KNIME?
- KNIME Applications
 - Transcription dynamics from 2D-t images
 - Deep learning for object detection

Deep learning for detecting subcellular structures

~10-25 nm (3 x 3 pixels)*

DNA FISH

~2-5 um (32 x 32 pixels)*

Chromosome Territories

~15-30 um (100 x 100 pixels)*

Nucleus

Use KNIME+KNIP for generating data for DL networks

Speed, Accuracy, and "NO PARAMETERS TWEAKING"

* 40X Dry Objective

High-throughput Position Mapping (HIPMap)

Conditions: Normoxia vs. Hypoxia

Cy5 Channel

SNR ~ 5

Images: Koh Nakayama, Misteli Lab

DNA FISH Spot Detection

Poor features spot-like objects \rightarrow Required separate ML model/channel

U-Net_{2L}: DNA FISH Spot Segmentation

KNIME for Generating UNet_{2L} Training Data

FISH Images From Three Spectral Channels (Plate Optimization Step)

Detect Spots Using Wavelets

Annotate "Good" Spots

Training Set: 189 FISH Images Validation Set: 23 FISH Images

UNet₂₁ in KNIME

KNIME+KNIP, Python 2.7 Keras, TensorFlow

	det	get_unet_short():
		inputs = input((img_rows, img_cois, i))
		convi = Conv2D(64, (3, 3), activation= relu, padding='same')(convi)
		poll = MayPool size(2, 2)) (conv1)
		hour - Haw correst (1) th (court)
		<pre>conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)</pre>
		<pre>conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv2)</pre>
		<pre>pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)</pre>
		<pre>conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)</pre>
		<pre>conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv3)</pre>
cript (1⇒1)		und = constants[[Com/DImprocess(129 (2 2) strides(2 2) addies_'come'](com/2) source = addies
		<pre>upb = Concatenate([Conv2b11anspose(126, (2, 2), stilles=(2, 2), paduling=same)(Conv2), conv2, axis=3) conv4 = Conv20(128, (3, 3) activation="real", paduling=same')(un3)</pre>
		conv4 = Conv20(128, (3, 3), activation=(clu), padding='same')(conv4)
<u> </u>		up4 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv2), conv1], axis=3)
		<pre>conv5 = Conv2D(64, (3, 3), activation='relu', padding='same')(up4)</pre>
		<pre>conv5 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv5)</pre>
at on Red		<pre>conv6 = Conv2D(1, (1, 1), activation='sigmoid')(conv5)</pre>
letonitteu		model = Model(inputs_[inputs] outputs_[conv6])
		model_compile(optimizer=Adm(l==1e-5), loss=dire coef loss, metrics=[dire coef])
		model.summary()
		return model
	det	<pre>unet_predict(wtsfname, imgs_test):</pre>
		print('_'*20)
		print(= 30)

https://github.com/CBIIT/Misteli-Lab-CCR-NCI

UNet_{2L} Performance

Threshold + Label (4-Connected)

Centroid (Binary Mask)

CoG (Mask+Intensity)

Equidistant/Area Shells

Extending UNet_{2L} For Sub-Cellular Structures

Chr Paint Mask (KNIP)

Chr.18

Acquisition: 300-500 ms Results: 500-800 ms vs 2-4 s(seeded Watershed)

Summary

Rapid prototyping for quantitative bio-imaging
Image Processing + ML + DL + Python + R

- Assess your requirements
 - KNIME forum(s), KNIP on GitHUB
 - Hardware: SSD and RAM
 - KNIME Server (commercial)

Future Work

- KNIME Server/WebPortal
 - Storage integration with KNIME
- KNIME + Deep Learning 4 Java (Tensorflow-JNI)

Multiplexing

Source: Guan et. al., Biophysical Journal doi: 10.1016/j.bpj.2017.01.032

Clevers, Cell, 2013

Acknowledgements

<u>HiTIF</u>	<u>Misteli Lab</u>	<u>Larson Lab</u>	<u>Hager Lab</u>	<u>Others</u>
G. Pegoraro	K. Nakayama	D. Larson	G. Hager	G. Zaki, HPC@CBIIT
L. Ozbun	Z. Jowhar	Y. Wan	D. Stavreva	CBIIT Server Team
A. Carcamo	S. Shachar	J. Roderiguez		Biowulf, HPC@CIT
	T. Misteli	M. Palangat		
		D. Larson		ABCC, FNLRC

KNIME + KNIP Team

Partially Funded By the National Cancer Institute, National Institutes of Health, Project Num. 1ZICBC011567-01.

Thank You

https://github.com/CBIIT/Misteli-Lab-CCR-NCI

"The content of this presentation does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government."

Contact Information

Prabhakar R. Gudla gudlap@mail.nih.gov

https://github.com/CBIIT/Misteli-Lab-CCR-NCI

High-Throughput Imaging Facility (HiTIF) Laboratory of Receptor Biology and Gene Expression Center for Cancer Research NIH CR)/NGL/NULLICER INSTITUTE

Robustness of UNet_{2L}

Fibroblast (Normoxia) 2 FISH Spots/ Cell

Test-P1

Finding AOIs in Plate

- First Pass: Brightfield, low magnification objective (e.g., 4X, Dry)
- Find Area(s) of Interest (AOI) using pixel-level segmentation
- Second Pass: Go back to AOI and image with higher magnification

Sequential DNA FISH

Before (Red: Run-1, Green: Run-2)

Source: Guan et. al., Biophysical Journal doi: 10.1016/j.bpj.2017.01.032

After Registration (Yellow is better)

CV7000, Objective: 40X, Dry

